Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Роль границ зерен для межкристаллитной коррозии

    Наличие даже немногочисленных трещин разрушения, идущих по зернам, наряду с результатами, полученными на монокристаллах, убедительно говорит о том, что само по себе присутствие межкристаллитных границ не является необходимым для проявления эффекта снижения прочности и пластичности в присутствии легкоплавких расплавов, т. е. что этот эффект но связан с межкристаллитной коррозией, а обусловлен сильным понижением поверхностной энергии металла. Вместе с тем, специфическая роль границ зерен, которые в присутствии сильно адсорбционно-активного компонента оказываются наиболее ослабленными местами в кристалле, требует дополнительного анализа. В качестве причин, обусловливающих эту особенность, можно отметить следующие факторы. [c.258]


    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Положение переходной области на оси потенциалов зависит от многих факторов и, в частности, от ориентации кристаллических граней на поверхности электрода. Поэтому при заданном потенциале могут достигаться условия пассивации одних граней, тогда как другие продолжают активно растворяться. Это играет важную роль в истолковании природы некоторых видов коррозии. Аналогично этому каждая структурная составляющая сплава также характеризуется своей парциальной потенциостатической кривой. На рис. 195 представлены парциальные потенциостатические кривые компонентов нержавеющей стали, содержащей 18% хрома, 8% никеля и не большую примесь углерода. При застывании этой стали по границам зерен выпадают карбиды хрома СгазСя и Сг,Сз, далее следует узкая зона обедненного углеродом раствора и, наконец, среднюю часть зерна образует твердый раствор, в котором содержание компонентов отвечает среднему составу сплава. Если потенциал электрода поддерживается в переходной области, то, как видно из рис. 195, наиболее быстрому растворению подвергается зона обедненного углеродом металла. При потенциалах в области перепассивации происходит более интенсивное растворение карбидов хрома. При этом сталь подвергается межкристаллитной коррозии. [c.366]


    Разрывы могут (про исходить между поверхностями зерен или же проходить через самые зерна. Однако разрывы, наблюдаемые вдоль меж(поверхностных границ зерен, почв Идимому, нельзя отнести к кор розии при механических напряжениях. Действительно, они наблюдаются у сталей, которые сами по себе чувс твительны к межкристаллитной коррозии кла ссическото типа, и прекращаются, как только вводят соответствующие изменения в состав стали или применяют режилт термической обработки, устраняющий эту чув ствителыность. Роль напряжений здесь сводится просто к тому, что они вызывают разрывы в ме- [c.167]

    Итак, стабилизированные стали должны содержать достаточное по отношению к углероду количество карбидобразующего элемента (достаточная стабилизация), который должен связать углерод в специальные карбиды и этим сделать невозможным выпадение карбидов хрома. В этом случае стали ведут себя приблизительно так, как если бы они почти совсем не содержали углерода. Напомним (см. 4.1), что стабилизация стали 1Х18Н9 титаном и ниобием в соответствии с эмпирическими формулами, приведенными выше (табл. 18), в большинстве случаев полностью подавляет склонность к межкристаллитной коррозии того типа, который проявляется у нестабилизированных сталей после сварки (см., например, рис. 31). Изделия, изготовленные с применением сварки из правильно стабилизированных сталей [226, 244], оказываются и без последующего отжига стойкими к межкристаллитной коррозии в зонах, подвергшихся термическому влиянию. Однако, нри более длительных выдержках в условиях критических температур и стабилизированные таким образом стали становятся также в различной мере склонными к межкристаллитной коррозии в зависимости от степени стабилизации. Действительно, ранее было установлено, что растворяющий отжиг при температуре 1150° С уже может оказать влияние на стойкость стали с более низким содержанием титана и ниобия. При этой температуре еще не может произойти значительный рост зерна, поэтому увеличение количества карбидов хрома, выделяющихся но границам зерен в зоне термического влияния сварного соединения, нельзя в этом случае объяснить только уменьшением всей поверхности границ за счет роста зерна. Точно так же гипотеза о значительной поверхностной активности углерода по отношению к хромоникелевому аусте-ниту, основанная на современных представлениях о роли поверхностных слоев кристаллов твердого раствора при термообработке поликристаллических веществ и очень хорошо описывающая распределение углерода в аустените, не объясняет процесс освобождения связанного в специальном карбиде углерода во время растворяющего отжига при высоких температурах. Чтобы в поверхностных слоях аустенитных зерен могла повыситься концентрация углерода, прежде всего должна произойти диссоциация присутствующих в структуре карбидов титана, ниобия или тантала, а для этого углерод и карбидобразующий элемент должны перейти в твердый раствор. Реально ли это с термохимической точки зрения, можно вывести [c.128]

    Роль напряжений в развитии межкристаллитной коррозии. Напряжения в микрообъемах границ зерен, по-видимому, не играют роли самостоятельного фактора, вызывающего склонность к межкристаллитной коррозии. Границы зерен, как наиболее напряженные участки, существуют и при температурах гомогенизации (в том числе при температурах около точки нулевой адсорбции). Любая длительность пребывания при этих температурах не приводит к появлению склонности к коррозии. Напряжения сдвигают потенциал аустенитных сталей в электроотрицательную сторону приблизительно на 0,02В, в том числе и при а Оо.г. Известно, что величина электроотрицательности границ, склонных к коррозии, достигает 0,2—0,6В по сравнению с телом того же зерна. Следовательно, не только напряжения вызывают анодность границ, но и сопровождающие их явления адсорбция, обеднение или пересыщение приграничного металла и образование на границах новых фаз. Этим процессам способствует сток дислокаций и вакансий к границам вместе с их атмосферами , реактивная диффузия и миграция зерен. Напряжения 1 рода не вызывают склонности к межкристаллитной и ножевой коррозии. Тем не менее нельзя их не учитывать при коррозии реального сварного изделия, так как они могут вызвать переход межкристаллитного разрушения в коррозионное растрескивание или в разрушение смешанного характера. [c.143]


Смотреть страницы где упоминается термин Роль границ зерен для межкристаллитной коррозии: [c.143]   
Смотреть главы в:

Межкристаллитная коррозия нержавеющих сталей -> Роль границ зерен для межкристаллитной коррозии




ПОИСК





Смотрите так же термины и статьи:

Граница зерен

Зерно

Межкристаллитная коррози

Межкристаллитная коррозия



© 2025 chem21.info Реклама на сайте