Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование О быстрое, кинетик

    Трудно уловить первичные продукты термической деструкции потому, что они не стабильны при температуре образования. Следовательно, если желательно их получить, следует как можно быстрее изолировать их от действия тепла. В лабораторных условиях этого можно достигнуть, нагревая пробу при пониженном давлении и удаляя летучие продукты с помощью вакуум-насоса по мере их образования. Уменьшение давления ускоряет их переход в паровую фазу и уменьшает время пребывания в горячей зоне. С другой стороны, из рассмотрения химической кинетики следует, что эти термически нестойкие продукты будут сохранены тем лучше, чем быстрее будет нагреваться уголь и чем выше температура, при которой выделяются летучие продукты. Все эти, на первый взгляд, парадоксальные явления хорошо подтверждаются экспериментальным путем. [c.79]


    Механизм действия сериновых протеиназ в настоящее время понят лучше механизма любого другого типа ферментов и может служить иллюстрацией некоторых важных моментов, касающихся ферментативного катализа. Гидролиз амида может показаться не слишком сложной реакцией химику-органику. В случае же ферментативного катализа для обеспечения успешного протекания реакции необходимо очень строгое обеспечение тех стадий, которые химик может счастливо игнорировать. В противном случае будет происходить замедление реакции. Даже механизм, приведенный на схемах (28) — (34) и насчитывающий 9 отдельных стадий, является, безусловно, упрощенным. [В качестве иллюстрации можно отметить, что в последних исследованиях механизма действия химотрипсина с использованием методов быстрой кинетики в водном диметилсульфоксиде при —90°С показано наличие четырех процессов, предшествующих образованию тетраэдрического интермедиата см. схему (28) . Первым из этих процессов является связывание субстрата, остальные, по-видимому, представляют собой индуцированные субстратом конформационные изменения в ферменте, необходимые для обеспечения правильной стереохимии катализа] [63]. Нетрудно понять, почему для катализа распада такой высоко энергетической частицы, как тетраэдрический интермедиат, требуется особое обеспечение такие стадии могут в конце концов быть скоростьопределяющими в самых простых реакциях. Однако в связи с тем, что для эффективного протекания ферментативного катализа необходимы очень [c.497]

    Последовательные реакции. При обсуждении особенностей диффузионной кинетики сложных процессов следует прежде всего подчеркнуть, что понятие области протекания реакции имеет смысл применительно к каждой отдельной реакции, но не к процессу в целом. Действительно, один и тот же процесс может включать как медленные, так и быстрые реакции, которые при одних и тех же условиях могут протекать в различных областях — диффузионных или кинетических. Одной из главных характеристик процесса, состоящего из нескольких одновременно протекающих реакций является его селективность (избирательность), т. е. отношение скорости образования целевого продукта к скорости расходования исходного вещества. На избирательность процессов, включающих последовательные реакции, определяющее влияние оказывает соотношение скоростей диффузии и дальнейшего превращения промежуточных [c.140]


    В общем случае интенсификация химического процесса определяется наилучшими условиями, обеспечивающими протекание химической реакции с максимальной скоростью. Следовательно, вопросы интенсификации ХТП решаются на основе анализа кинетики химических реакций. Рециркуляция способствует уменьшению времени реакции и, как следствие этого, в результате быстрого отвода продуктов реакции из реакционной зоны - увеличению концентраций реагирующих веществ. Методика кинетического расчета для определения эффективно функционирующего реакционного узла при наличии рецикла, предложенная М. Ф. Нагиевым, позволяет определить условия, в которых возможна максимальная производительность объема реактора при минимальном образовании побочных продуктов, обеспечивает возможность эффективного применения рециркуляции, дающей максимальный эффект интенсификации химического процесса. [c.301]

    Вопросы кинетики и состава продуктов крекинга неотделимы друг от друга, так как соотношение продуктов определяется соотношением скоростей радикальных реакций их образования. Главные продукты крекинга определяются наиболее быстрыми радикальными реакциями, характером цепного цикла, а кинетика крекинга — наиболее медленными стадиями процесса, то есть реакциями инициирования и распада радикалов. [c.27]

    Большинство химических превращений в газовой и жидкой фа зах относятся к сложным химическим процессам, протекающим через ряд стадий (элементарных реакций). Совокупность всех стадий такого процесса, в итоге которых возникают наблюдаемые продукты, а также данные влияния концентрации, температуры, давления и других физико-химических факторов на скорости элементарных реакций позволяют представить механизм сложного процесса. Первоначальная задача изучения сложного химического процесса состоит в выяснении совокупности отдельных стадий различными химическими или физическими методами. Среди химиков распространено представление о том, что для решения этой первой фактически качественной задачи достаточно средств химии и физики без использования методов химической кинетики, т. е. без изучения скорости реакций. Однако понять количественные соотношения наблюдаемых выходов продуктов не удается, если не изучены скорости их образования. Следует иметь в виду, что состав главных продуктов определяется наиболее быстрыми реакциями, а кинетика сложного превращения или, как говорят, брутто-реакции — наиболее медленными реакциями. Поэтому выяснение механизма сложной реакции никогда не ограничивается установлением качественного и количественного состава продуктов превращения с помощью физикохимических методов исследования и наметкой схемы или механизма превращения, всегда носящий характер гипотезы, а проводится еще и детальное изучение скоростей сложной реакции и ее отдельных стадий. [c.213]

    Определение абсолютной концентрации активных центров фермента из кинетических данных. В предыдущих разделах была рассмотрена кинетика ферментативных реакций в условиях избытка субстрата по сравнению с ферментом ([S]q [Elg). Рассмотрим теперь случай, когда концентрация субстрата сравнима по величине с концентрацией. фермента ([Slg [Е] ), и выведем уравнение для скорости ферментативной реакции, протекающей по двухстадийному мез анизму при условии быстрого установления равновесия на стадии образования фермент-субстратного комплекса  [c.232]

    Образование продукта Pi в начальный период реакции следует кинетике первого порядка это означает, что равновесие при образовании фермент-субстратного комплекса (ES) устанавливается очень быстро, в пределах мертвого времени прибора, Таким образом, в изучаемом временном интервале ферментативного процесса действительно соотношение [c.204]

    Использование различных вариантов метода фотоэмиссии (в том числе лазерного) позволяет решать широкий круг вопросов в области химической и электрохимической кинетики. Малые расстояния между зоной образования промежуточных продуктов и поверхностью электрода в значительной мере устраняют диффузионные ограничения и дают возможность измерять константы скорости очень быстрых электродных к 75 см/с) и гомогенных химических реакций, характерное время которых сравнимо или больше характерного времени диффузии к электроду продуктов захвата сольватированных электронов акцептором (10 —10 с) Метод позволяет также определять коэффициенты переноса электродных реакций и измерять коэффициенты диффузии промежуточных продуктов. [c.219]

    Ограничение скорости реакции и возникновение на поляризационной кривой квазидиффузионного предельного тока, отличного от истинного предельного тока диффузии по разряжающемуся веществу, может иметь место в тех случаях, когда образование реагирующих на электроде протонированных частиц происходит быстро, но в растворе низка концентрация доноров протонов. Скорость такого процесса лимитируется стадией подвода к поверхности электрода доноров протонов, например ионов гидроксония, и подчиняется закономерностям диффузионной кинетики, хотя собственно электрохимической реакцией является не выделение водорода, а восстановление органического вещества. [c.236]


    Типичным примером цепной реакции может служить взаимодействие хлора с водородом на свету. Если, хотя бы очень кратковременно, подвергнуть смесь I2 и На интенсивному освещению, то происходит быстрое образование хлористого водорода. Объяснение особенностей кинетики этой реакции состоит в следующем (Нернст). Сначала фотон поглощается молекулой хлора, связь С1—С1 разрывается и [c.250]

    Лабильные комплексы — соединения, обладающие быстрой кинетикой образования и диссоциации. Условно периоды полу-реакаий таких комплексов составляют менее 1 минуты (стр. 173). [c.213]

    Поскольку образование озона является одним из основных процессов, происходящих при воздействии излучений на воздушную среду, мы подробнее остановимся на некоторых свойствах озона и озоно-кислородных смесей, которые проявляются в различных радиашюино-химических процессах в воздушной среде, а также при применениях газообразного или жидкого кислорода в процессе действия на него излучения. Эти свойства определяются двумя основными факторами способностью озона легко вступать во взаимодействие с различными веществами и быстрой кинетикой разложения, сравнительно легко переходящей в воспламенение и взрыв. [c.75]

    Получаемые на опыте скорости и энергии активации для образования спирали (табл. 23.6) в основном не зависят от длины цепи. Напротив, скорость разрушения спиральной структуры очень резко падает с увеличением длины для большинства исследованных систем. Энергия активации для плавления также сильно зависит от длины цепи и составляет 5-6 ккал на каждую пару почти для всех приведенных в табл. 23.6 комплексов. Эта величина лишь немного меньше известной энтальпии разрушения стэкинга пары оснований. Таким образом, можно сделать вывод, что лимитирующим этапом при диссоциации коротких спиральных комплексов является разрушение большей части пар оснований, которое необходимо, по-видимому, для образования быстро релаксируюшего состояния, содержашего лишь зародыш спиральной структуры и играющего важную роль при образовании спирали. В опытах по релаксационной кинетике олигонуклеотидов, как правило, используются концентрации цепей около 10 М. Поэтому, как следует из соотношений (23.556) и (23.566) и табл. 23.6, при комнатной температуре процесс лимитируется диссоциацией цепей. При этом наблюдаемые времена релаксации лежат в интервале от 1 мс до 1 с. [c.340]

    Реакция гидрогенолиза циклопропана в присутствии порошка Re подчиняется уравнению псевдопервого порядка, кажущаяся энергия активации равна 52,3 кДж/ /моль [101]. Полагают [101], что лимитирующей стадией процесса является расщепление трехчленного цикла с последующим быстрым присоединением водорода. Сходный механизм с промежуточным образованием 1,3-диадсорбированных частиц постулируется [102] при исследовании кинетики и механизма гидрогенолиза циклопропана на ряде нанесенных Ni-катализаторов. Этот механизм согласуется с результатами по дейтерообмену. [c.106]

    Ганзлик с сотр. изучали кинетику образования дифенилолпропана в среде 72,5%-НОЙ серной кислоты при мольном соотношении фенола к ацетону в исходной смеси 1,78 1. Авторы считали возможным пренебречь побочными процессами и не принимать во внимание обратные превращения, вследствие того что равновесие сильно сдвинуто вправо и реакция практически доходит до конца. Для определения скорости реакции измеряли концентрацию фенола в разные моменты времени. Поскольку в реакцию может вступить только одна молекула ацетона, а фенола — одна или две, обработку полученных данных вели по двум уравнениям — второго и третьего порядка. Оказалось, что экспериментальные результаты соответствуют первому уравнению, т. е. можно заключить, что лимитирующей стадией является бимолекулярная реакция между обоими компонентами — взаимодействие одной молекулы фенола с одной молекулой ацетона полученный карбинол затем быстро реагирует со второй молекулой фенола, образуя дифенилолпропан. Такой механизм наблюдался при добавлении промотора (тиогликолевой кислоты) и без него. [c.84]

    В-третьих, приведенные выше уравнения справедливы для описания кинетики окисления в течение времени, пока распад гидропероксида происходит медленно в сравнении со скоростью его образования. По мере накопления ROOH он распадается все быстрее (скорость его распада в первом приближении равна d[ROOH], kd ii). Поэтому параболический закон будет нарушаться при таких [ROOH], когда неравенство [c.61]

    Непосредственно показано, что в процессах ценного горения гетерогенная рекомбинация носителей цепей с образованием исходных реагентов является далеко не едиаствинной реакцией этих частиц на поверхности, что, по-видимому, следует учитывать при расчетах кинетики ценного процесса. Обнаруженная быстрая >емосорбция может изменять способность поверхности захватывать активные центры цепей и, кроме того, являться дополнительным путем расходования исходного вещества. [c.209]

    При затворении цемента водой она быстро насыщается Са304/ который вступает в реакцию с алюминатом и алюмоферритом кальция. Сначала образуется АР -фаза. На следующих стадиях, по мере израсходования сульфата кальция, начинается образование АРт-фазы. При этом уже образовавшаяся АР/-фаза также может переходить в АРт-фазу. Кинетика этих процессов зависит от содержания алюминатов, алюмоферритов и гипса в портландцементе. [c.97]

    Исследование механизма и кинетики процессов холоднопламенного окисления углеводородов позволило установить, что они протекают аутокаталитически, ускоряясь промежуточными соединениями. Это доказывается медленным индукционным периодом, после которого наступает быстрая цепная реакция окисления, ускоряемая образованием свободных радикалов. Например, окисление пентана можно представить следующим образом  [c.197]

    В последнее время методом малоугловой рентгеновской дифракции в кристалличес ких и аморфных полимерах обнаружено возникновение в нагруженном образце множества субмикроскопи-ческих трещин [16, с. 286]. В кристаллических полимерах они возникают в аморфных прослойках. Субмикротрещины ориентированы перпендикулярно растяжению, их размеры порядка десятков нанометров. Установлено, что они образуются за счет протекания цепных свободно-радикальных реакций распада напряженных молекул. Образование субмикротрещин вызывает разгрузку в прилегающих к ним вдоль оси растяжения областях (порядка сотен нанометров) и повышение напряжения в боковых относительно трещин зонах, что проявляется в увеличении растяжения этих зон. Прослежена кинетика образования субмикротрещин вплоть до разрыва образца. С течением времени их размеры не увеличиваются, но растет их число. Скорость накопления субмйкротрещин растет с повышением напряжения. Когда субмикротрещин образуется достаточно много, они начинают сливаться, и в конце концов образуется магистральная трещина, которая, быстро прорастая, приводит к разрушению образца полимера. [c.216]

    Прямое кинетическое подтверждение образования промежуточных соединений и Х2 в катализе гидролиза эфиров N-aцилиpoвaнныx-L-аминокислот получено из анализа кинетики реакции на длинах волн поглощения промежуточных соединений ( 290 нм) [9]. Так, при смешивании раствора а-химртрипсина с метиловым эфиром Ы-ацетил-1-фенилаланина наблюдается быстрое (кинетически неразрешенное) спектральное изменение (по-видимому, образование первичного фермент-субстратного комплекса Х ), за которым следует медленная кинетика образования ацилфермента (рис. 64,а). В стационарной фазе реакции в условиях,, когда расходом субстрата можно пренебречь, концентрация ацилфермента сохраняется постоянной последующий расход субстрата приводит к- исчезновению в растворе промежуточных соединений (рис. 64,6) [9]. [c.198]

    Другой важный результат был получен методами нестационарной кинетики — это константы скоростей весьма быстрой бимолекулярной стадии образования промежуточного фермент-субстратного комплекса (табл. 34). Можно было бк думать, согласно (7.2), что эти значения гораздо больше величины, которую дает оценка их нижнего предела. Однако из табл. 34 видно, что наиболее распространенные значения кх = 10 — 10 М" -с и, следовательно, они того же порядка, что и величины Кт.каж, опрбделяющие общую скорость ферментативной реакции (см. табл. 33). [c.269]

    В последнее время работами Хесса с сотрудниками [5—7] на примере а-химотрипсина был развит новый метод изучения кинетики начальных стадий ферментативных реакций, получивший название метода вытеснения профлавина . Метод основан на том факте, что краситель профлавин (3,6-диаминоакридин) при связывании с а-химотрипсином в водном растворе изменяет свой спектр поглощения в ультрафиолетовой области. Величина разностного спектра поглощения, имеющего максимальное значение при длине волны 465 нм, пропорциональна -концентрации комплекса фермент-профлавин. Введение в систему фермент-профлавин субстрата, конкурирующего с красителем за связывание на активном центре а-химотрипсина, приводит к двум последовательным процессам вытеснения профлавина. Первый, очень быстрый процесс, заключается в обратимом вытеснении красителя из комплекса его с ферментом за счет образования нековалентного фермент-субстратного комплекса. Второй процесс, времена прохождения которого лежат обычно в пределах разрешения установок типа остановленной струи , вызван химическим взаимодействием субстрата с ферментом (например, образованием ацилферментного промежуточного соединения), что приводит к дополнительному уменьшению концентрации комплекса фермент-профлавин. Изучение кинетики второго процесса при различных концентрациях субстрата в дополнение к изучению кинетики ферментативной реакции в стационарном режиме позволяет сделать заключения о стадийности изучаемой реакции, а также найти значения констант скоростей промежуточных стадий ферментативной реакции. [c.188]

    В полиферментных системах, примером которых является цел-люлазная (см. схему 117), установление стационарного состояния по отдельным компонентам обычно происходит в двух совершенно различных временных масштабах. Первым устанавливается стационарное состояние по фермент-субстратным комплексам (на схеме 117 не показано), когда скорости их образования и распада значительно превосходят разницу между этими скоростями (здесь и далее рассматривается кинетика при избытке субстрата по сравнению с концентрациями ферментов в системе). Как правило, данное условие начинает выполняться уже в начальный период реакции (в секундном диапазоне или еще быстрее), когда система в целом еще нестационарна по промежуточным метаболитам. Переход всей полиферментной системы в стационарное состояние, в котором концентрации промежуточных метаболитов практически не меняются во времени (точнее, когда скорости их образования и распада значительно превосходят разницу между этими скоростями), происходит обычно достаточно медленно (нередко стационарное состояние вообще не достигается), для большинства изученных целлюлолитических реакций в реальных условиях в течение нескольких часов [24—26]. Это позволяет считать при анализе предстационарной кинетики полиферментных систем, что стационарное состояние по фермент-субстратным комплексам устанавливается практически мгновенно и что образование и распад промежуточных метаболитов происходит в соответствии с обычным уравнением Михаэлиса — Ментен. Тогда в условиях превраи ения исходного субстрата на небольшую глубину, принимая гомогенное распределение ферментов и субстратов в целлюлазной системе и считая превращения практически необратимыми, кинетику ферментативного гидролиза целлюлозы (см. схему 117) описывает следующая система дифференциальных уравнений  [c.125]

    Проводя измерения спектров через определенные промежутки времени, можно построить зависимость изменения концентрации компонентов от времени и использовать эту зависимость для исследования кинетики и механизма реакций. Если обнаруживается сигнал промежуточного продукта реакции, можно установить его строение, скорость образования и распада, получить прямые сведения о лимитирующей стадии реакции. Случай, промежуточный между медленным и быстрым обменом,. может быть представлен набором спектров, соотве1ствую-щих переходу от медлеЕПюго обмен ) к быстрому или наоборот. Ускорение обмена приводит к уширению, сближению и постепенном) слиянию полос (рис. 6.52). [c.319]

    Все сказанное сгараведливо только для обратимого процесса, т. е. для плотностей тока, стрбмяш,ихся к нулю. При значительных плотностях тока, принятых в практике электролиза, реакции ионизации с образованием ионов Си+ протекают с меньшими затруднениями — с меньшей поляризацией, чем реакции ионизации Си—2е->Си +. В результате этого в раствор будут переходить ионы одновалентной меди в количестве, несколько большем, чем это требуется по равновесию (Х1У,5). Однако в электролите, где действуют законы термодинамики, а не электрохимической кинетики, быстро вновь установится соотношение 2Си+ Си +4-Си и избыточные против равновесного одновалентные ионы меди будут да вать ионы двухвалентной меди и металлическую медь, выпадающую в виде высоко-дисперсного порошка в шлам. [c.393]

    Скорость роста идеально гладкой грани пропорциональна частоте появления на ней двумерных зародышей. Этот этап является весьма чувствительным к пересыщению, и вероятность образования нового слоя при пересыщениях ниже 25—50% совсем ничтожна. Дальнейшее разрастание слоя происходит быстро и от пересыщения не зависит. Однако в реальных кристаллах рост кристалличеекой поверхности становится непрерывным и осуществляется при ма/гых пересыщениях порядка 1 % и ниже. Это противоречие между теорией и практикой объясняет так называемая дислокационная теория. В настоящее время эти представления о механизме и кинетике роста кристаллов из пара являются общепринятыми. Согласно дислокационной теории винтовые дислокации, всегда присутствующие в реальном кристалле и выходящие на растущую поверхность, обеспечивают наличие готовых ступенек. Частицы, адсорбировапные поверхностью, свободно по ней перемещаются и, наконец, присоединяются к имеющемуся дислокационному выступу — ступеньке. В процессе кристаллизации ступеньки не зарастают, а сохраняются в новых слоях. Поэтому вся кинетика роста определяется движением ступенек и нет необходимости в появлении новых двумерных зародышей. При таком механизме роста полностью заполненных плоскостей нет, присоединение частиц происходит по спирали. -Для образцов с достаточно ( свершенной структурой плотность дислокаций, выходящих на поверхность, достигает 10 Поэтому рост такой поверхности происходит во многих точках одновременно и микрорельеф ее оказывается не гладким, а шероховатым. [c.60]

    Применяя комплекс физических и физико-химических методов исследования, различные авторы часто получают не совпадающие по абсолютным величинам параметры, которые характеризуют кинетику гидратации, например, энергию активации [231, 230], но отдельные моменты процесса гидратации в работах [221 —232, 56— 58] описаны аналогично. Обобщая их, можно считать установленным, что первоначальная быстрая реакция гидратации, идущая с выделением тепла, в течение нескольких минут приводит к образованию высокоизвестковогб гидросиликата кальция. Он очень плотно прилегает к негидратированному зерну СдЗ и тем самым на некоторое время затормаживает дальнейшую гидратацию. За этот период успевает прореагировать не более Ъ—5% СдЗ. Глубина прореагировавшего в течение 2 ч слоя составляет около 0,03 мк [c.76]


Смотреть страницы где упоминается термин Образование О быстрое, кинетик: [c.177]    [c.12]    [c.12]    [c.12]    [c.208]    [c.45]    [c.443]    [c.43]    [c.343]    [c.369]    [c.50]    [c.56]    [c.196]    [c.59]    [c.44]    [c.205]    [c.181]    [c.268]    [c.229]    [c.251]    [c.60]   
Химия горения (1988) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика образования ила



© 2025 chem21.info Реклама на сайте