Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризационные кривые потенциостатические

    При потенциостатических измерениях изучают зависимость тока от времени при постоянном потенциале электрода, поддерживаемом при помощи потенциостата. В определенной области потенциалов ток анодного растворения металла по прошествии некоторого промежутка времени резко падает, что свидетельствует о наступлении пассивного состояния. При помощи потенциостатического метода измеряют также зависимость тока от потенциала электрода. Типичная поляризационная кривая при пассивации металла приведена на рис. 191. На этой кривой можно выделить область увеличения тока с ростом анодного потенциала (I) (активная область) область перехода от активного состояния к пассивному (II) область пассивации (III), в которой ток растворения металла мал и часто практически не зависит от потенциала, и, наконец, область анодного выделения кислорода (IV). Если раньше анодного выделения кислорода наступает вновь растворение металла, то область IV называется областью перепассивации или транс-пассивности. Механизмы растворения металла в активной области [c.380]


Рис. 86. Анодные поляризационные кривые потенциостатические условия (о), гальваностатические условия (б). Рис. 86. <a href="/info/581624">Анодные поляризационные кривые</a> <a href="/info/1488579">потенциостатические условия</a> (о), гальваностатические условия (б).
Рис. 194. Потенциостатическая поляризационная кривая анодного растворения металла, способного пассивироваться Рис. 194. Потенциостатическая поляризационная <a href="/info/1908007">кривая анодного растворения металла</a>, способного пассивироваться
Рис. 5.14. Плотности критического тока пассивации и тока в пассивной области, полученные из потенциостатических анодных поляризационных кривых для сплавов Си—N1 в 1 н. НаЗО , 25 °С 47] Рис. 5.14. <a href="/info/1640659">Плотности критического тока</a> пассивации и тока в пассивной области, полученные из потенциостатических <a href="/info/581624">анодных поляризационных кривых</a> для сплавов Си—N1 в 1 н. НаЗО , 25 °С 47]
    Исследование проводилось методом снятия поляризационных кривых потенциостатическим способом с помощью потенциостата П-5827. Достаточной скоростью развертки потенциала оказалась [c.142]

Фиг. 9. Схема установки для измерения поляризационной кривой потенциостатическим методом Фиг. 9. <a href="/info/13990">Схема установки</a> для измерения поляризационной кривой потенциостатическим методом
Рис. 5.8. Потенциостатические поляризационные кривые нержавеющей стали типа 18-8 в 0,1т Na l, показывающие повышение потенциала питтингообразования с увеличением добавок NajSOi при 25 G Рис. 5.8. Потенциостатические поляризационные кривые <a href="/info/17132">нержавеющей стали</a> типа 18-8 в 0,1т Na l, показывающие повышение <a href="/info/333699">потенциала питтингообразования</a> с увеличением добавок NajSOi при 25 G

    Предположим, что анодом служит железо, погруженное в 1 и. Н2304. Анод расположен так, что при постепенном возрастании потенциала соответствующий поляризационный ток достигает значения, которое требуется для поддержания преобладающего потенциала по отношению к какому-либо электроду сравне ия. Регулировать ток можно вручную или, лучше, с помощью потенциостата. Полученная поляризационная кривая представлена на рис. 5.1. Она называется потенциостатической поляризационной кривой, в отличие от гальваностатической кривой (рис. 5.2), полученной, например, с помощью схемы, в которой ток поддерживается постоянным, а потенциал изменяется в соответствии с током (см. рис. 4.3, а). [c.72]

    Для проведения определения методом потенциостатической кулонометрии предварительно снимают поляризационные кривые (зависимость ток — потенциал) в растворе фона в отсутствие и в присутствии анализируемого вещества. По поляризационной кривой находят область потенциалов, в которой достигается предельный ток определяемого вещества. Потенциал рабочего электрода следует выбирать в этой области, обычно на середине площадки предельного тока. [c.177]

    В работе приведены результаты исследований анодных процессов методом поляризационных кривых, потенциостатическим методом, а также путем определений перекисных соединений в растворах щелочей с добавками борной кислоты, в растворах буры, пентабората калия, карбонатов щелочных металлов и аммония и в смевзанных растворах карбонатов и боратов. Исследования проводились с целью выяснения особенностей кинетики анодных процессов, природы поляризации, определения кинетических параметров, выяснения механизма элементарных актов, выяснения влияния различных факторов на условия образования перекисных соединений в перечисленных системах. [c.140]

    Рнс. 1.13. Потенциостатические анодные поляризационные кривые углеродистой стали при температуре 80 и давлении СО2 0,7 МПа в конденсационной воде  [c.33]

    А. Т. Ваграмян с сотр. [42] показал, что образующаяся на катоде в процессе электролиза пленка, наоборот, способствует восстановлению хромат-ионов до металла. По данным авторов, в чистом растворе хромовой кислоты электроды из хрома, железа, никеля, кобальта или других металлов покрываются прочной окисной пленкой, которая препятствует восстановлению ионов хрома даже при поляризации катода до высокого электроотрицательного потенциала. В этих условиях выделяется только водород, причем при повышенном перенапряжении. Восстановление хромат-иона на этих электродах возможно только в присутствии небольшого количества указанных выше анионов, которые служат как бы катализаторами процесса. При этом в зависимости от потенциала изменяется как характер, так и скорость электрохимических реакций. Последнее иллюстрируется поляризационными кривыми, полученными потенциостатическим методом в растворе [c.415]

    Таким образом, для понимания механизма пассивации необходимо изучение закономерностей образования, роста и свойств оксидных слоев. Для этого используют разнообразные электрохимические, а также оптические методы (см. 17), из которых особый интерес представляет эллипсометрический метод, позволяющий исследовать состояние поверхности металла непосредственно при измерении потенциостатических поляризационных кривых. Был разработан иодидный метод отделения пассивирующей пленки от металла, который основан на том, что раствор 1а+К1 проникает через поры пленки к поверхности металла и растворяет его. Отделенный от металла тонкий пассивирующий слой может быть далее подвергнут электронно-микроскопическому ис- [c.367]

Рис. 5.1. Анодная потенциостатическая поляризационная кривая железа в 1 н. Нг304 [5] Рис. 5.1. Анодная потенциостатическая поляризационная кривая железа в 1 н. Нг304 [5]
    Примеры применения метода. Метод потенциостатической кулонометрии применим для определения большого числа соединений и ионов. Условия проведения анализа определяются из поляризационных кривых. [c.63]

    Поляризационные кривые в потенциостатическом режиме снимают с помощью потенциостата. Для записи 1 —ф-кривых применяют электронный быстродействующий потенциометр, шкала которого градуируется по току и потенциалу. В данном случае скорость изменения потенциала варьируется от 0,55 до 33 мВ/с. [c.279]

    Детальное разграничение областей, отвечающих различным состояниям металла, сделалось возможным благодаря применению потенциостатического метода снятия поляризационных кривых. Пока пользовались обычным гальваиостатическим методом, многие особенности анодного поведения металлов ускользали от наблюдателей. Удавалось обнаружить только внезапные изменения потенциала, которые при прямом (от малых плотностей тока к большим) и обратном (от больших плотностей тока к малым) снятии поляризационных кривых настуналг не при одних и тех же плотностях тока, что указывало на сущестзоваиие каких-то гистерезисных [c.480]


    Стационарные поляризационные кривые при наличии на них падающих характеристик (что наблюдается, например в случае пассивирующихся металлов, когда сдвиг потенциала в положительном направлении сопровождается уменьшением скорости растворения), не могут быть измерены с помощью упомянутого выше гальваностатического метода измерения. Для их измерений используют потенциостатический метод — измерение зависи- [c.456]

    Поляризационные кривые позволяют изучить кинетику электродных процессов, величину защитного тока при электрохимической. чащите, явление пассивности и др. Существует два способа снятия поляризационных кривых гальваностатический и потенциостатический. Гальваностатический метод заключается в измерении стационарного потенциала металла при пропускании через него тока определенной плотности. По ряду значений потенциалов при соответствующих плотностях поляризующего тока строят кривые катодной или анодной поляризации, т. е. зависимости Е = /(г к) или Е = /(/,г). [c.342]

    В ячейку вводят фоновый раствор (15 мл раствора К2504 и 15 мл раствора Н2504) и 2 мл раствора тиокарбамида, погружают платиновый электрод и соединяют ячейку электролитическими ключами с камерами вспомогательного электрода и электрода сравнения. Снимают анодную поляризационную кривую, начиная запись от равновесного потенциала, как описано в работе I данного раздела. По полученной кривой 1 = 1(Е) выбирают потенциал рабочего электрода, при котором проводят далее потенциостатическое определение тиокарбамида. [c.179]

    Потенциостатическая поляризационная кривая содержит больше информации, чем гальваностатическая, так как более точно соответствует действительному поведению пассивных металлов, являющихся электродами гальванических элементов. Из рис. 5.1 видно, что железо активно при малых плотностях тока и анодно корродирует с образованием Ре " согласно закону Фарадея. При увеличении тока на поверхности электрода образуется частично изолирующая пленка, состоящая из Ре504. При критическом значении плотности тока / рит 0>2 А/см (при перемешивании или [c.72]

    Влияние несимметричности реакций фарадеевское выпрямление) наблюдается особенно часто при вызываемой переменным током коррозии пассивных металлов (в основном, по определению 1 в гл. 5). Показано, что нержавеющие стали корродируют под действием переменного тока [4], алюминий в разбавленных растворах соли разрушается при 15 А/м на 5 %, а при 100 А/м на 31 % по отношению к разрушениям, вызванным при 100 А/м постоянным током той же силы. Феллер и Рукерт [4] изучали воздействие наложения переменного тока (1 В, 54 Гц) на постоянный на никель в 1 н. H2SO4. Оказалось, что на потенциостатических поляризационных кривых полностью исчезла пассивная область, а высокая плотность анодного тока сохранялась во всей области положительных потенциалов. Чин и Фу [5] отметили аналогичное поведение мягкой стали в 0,5т NajSOi при pH = 7. Плотность пассивирующего тока возрастала с повышением плотности наложенного переменного тока, достигая при плотности тока 2000 А/м и частоте 60 Гц критического значения (отсутствие пассивной области). Они нашли также, что при плотности переменного тока 500 А/м потенциал коррозии снижался на несколько десятых вольта, одновременно в отрицательную сторону сдвигалась и область Фладе-потенциала, но [c.209]

    Одним из основных методов её исследования является анализ поляризационных кривых, отражающих зависимость скорости процесса г от величины электродного потенциала е. Такие кривые можно получить компенсационным методом, потенциостатически или гальваностатически с применением неподвижного электрода или вращающегося дискового электрода. Природу замедленной стадии можно установить по форме кривой, ее изменению с изменением температуры, концентрации и состава электролита. По характеру зависимости предельного тока от скорости вращения дискового электрода можно разграничить влияние диффузии и химической стадии. Форма кривых изменения потенциала электрода во времени при постоянной плотности тока или без него дает возможность судить об отсутствии или наличии пассивационных явлений. Температурная зависимость скорости электрохимических реакций (температурно-кинетический метод) используется для расчета [c.138]

    Опыт 1. Исследовать катодный процесс в электролитах № 1 и № 4 при 25 °С методом снятия потенциостатических или по-тенциодинамических (скорости развертки 0,02—1,0 В/мин) поляризационных кривых в интервале потенциалов от стационарного до A —1,2 В на хромированной торцевой поверхности [c.47]

    Поляризационная кривая, измеренная гальваностатическим методом при последовательном увеличении плотности тока, отличается от потенциостатической кривой. По достижении тока, соответствующего максимуму скорости растворения металла в активной области, при а=соп81 происходит скачкообразное изменение потенциала электрода до значений, отвечающих области выделе-. ния кислорода или перепассивации металла (см. рис. 194). В результате на гальваностатической поляризационной кривой имеется участок, где ток не зависит от потенциала, что не связано, однако, с диффузионными ограничениями. Гальваностатический метод непригоден для изучения закономерностей поведения металлов в переходной области и в области пассивации. [c.367]

    Проведенными ранее исследованиями показана высокая эффективность сульфаминового электролита для фракционного разделения металлов в условиях потенциостатического электролиза при переработке полиметаллического сырья, содержащего золото, серебро, цветные и редкие металлы. В отчетный период продолжены работы по изучению электрохимического поведения платиновых металлов в растворах сульфаминовой кислоты. Изучено влияние концентрации кислоты (25 - 100 г/л) и вида подготовки поверхности образца на анодную поляризацию палладия. Измерены стационарные потенциалы металла. Анализ поляризационных кривых [c.107]

    Поляризационная кривая, измеренная гальваностатическим методом при последовательном увеличении плотности тока, отличается от потенциостатической кривой. По достижении тока, соответствующего максимуму скорости растворения металла в активной области, при а = onst происходит скачкообразное изменение потенциала [c.381]

    Особый интерес представляет эллипсометрический метод, который позволяет исследовать состояние поверхности металла непосредственно при измерении потенциостатических поляризационных кривых. Этот метод был предложен в 1933 г. Л. Тронстадом и детально развит в работах Дж. Бокриса, Е. Егера и др. Принцип метода состоит в определении относительного запаздывания по фазе и относительного уменьшения амплитуды компонентов эллиптически поляризованного света при отражении от поверхности исследуемого электрода. Из этих [c.382]

    При измерениях в стационарных условиях электрод выдерживают в потенциостатическом режиме ( = onst) до установления постоянного значения тока или в гальваностатическом режиме (i = onst) до установления постоянного значения потенциала. Получаемая при этом поляризационная кривая называется стационарной, она характеризует протекание процесса при стационарном заполнении поверхности компонентами. [c.269]

    На поляризационных кривых, отвечающих электрохимическим превращениям органических веществ на платиновых металлах, часто наблюдаются падающие характеристики, т. е. участки, на которых й ц11йЕ<0. Поэтому зависимость тока от потенциала во всем интервале Е может быть получена только в потенциостатическом или потенциодинамическом. режимах. [c.270]

    Потенциостатический метод снятия поляризационных кривых, существо которого заключается в том, что при каждом заданном значении потенциала электрод выдерживается до установления стационарной плотности тока, был применен А. И. Левиным с сотрудниками для определения характера электродной поляризации при осаждении цинка, железа, хрома и меди (в последнем случае из комплексного пирофосфатного электролита) с совместным выделением водорода. С помощью потенцио-статических измерений Деляхею удалось определить зависимость силы тока от потенциала для отдельных электрохимических процессов при одновременном протекании нескольких электродных реакций. [c.255]

    При прямом методе снятия потенциостатической кривой после обычной предварительной подготовки поверхности обоих электродов и выдержки в растворе в отсутствие внешней поляризации потенциал поляризуемого электрода постепенно повышают, проходя последовательный ряд значений от стационарного потенциала (около 0,3 б в растворе универсальной буферной смеси с добавкой 0,5 н. Na I) до 2 в с интервалом в 0,1 б. Продолжительность выдержки на каждой точке целесообразно принять одинаковой, например 2 мин, 5 мин и т. д., регистрируя каждый раз силу тока по показаниям микроамперметра. Более длительная выдержка необходима в области потенциалов, в которой происходит пассивация электрода (или при переходе от пассивного состояния в активное при обратном ходе снятия поляризационной кривой). [c.222]

    Прежде всего пойдет первый процесс (кривая АВ, рис. 111) ионы свинца при этом сразу же вступят во вторичную химическую реакцию с образованием труднорастворимой соли PbSO4. В этот момент на поляризационной кривой, снятой потенциостатически, будет наблюдаться спад тока (кривая ВС) при одновременном быстром возрастании анодной поляризации. При более высокой плотности тока достигается потенциал электродной реакции (2) и на аноде образуется нерастворимый высщий окисел этого металла. [c.289]

    Очевидно, что прежде всего пойдет первый процесс ионы свинца при этом сразу же вступят в химическую реакцию с образованием труднорастворимой соли PbS04. Поскольку концентрация сульфата или серной кислоты в растворе обычно значительна, то после включения тока очень быстро достигается произведение растворимости PbS04, который выкристаллизовывается на поверхности анода, образуя солевую пленку. В этот момент на поляризационной кривой, снятой потенциостатически, будет наблюдаться спад тока при одновременном быстром возрастании анодной поляризации (рис. 105). После спада тока потенциал электрода заметно и быстро растет до выделения кислорода. Спад тока и смещение потенциала обусловлены тем, что образовавшаяся на свинцовом аноде солевая пленка несплошная и в порах ее возможна ионизация свинца. В связи с сокращением поверхности истинная плотность тока возрастает и потенциал сдвигается в область более положительных значений. При этом достигается потенциал реакции (3) и на аноде образуется нерастворимый высший окисел металла РЬОг. Однако на этой стадии процесс не задерживается, так как образовавшаяся в порах фазовая пленка двуокиси свинца не обладает ионной электропроводностью и рост ее быстро затормаживается. Это приводит к дальнейшей значительной поляризации анода, вплоть до потенциала выделения кислорода. Вместе с тем, для протекания этого процесса необходимо значительное перенапряжение, поэтому становится возможным более электроположительный процесс (4) окисления ранее образовавшегося сульфата до двуокиси свинца. Не исклю- [c.436]

    Влияние ингибиторов иа кинетику электрохимических реакций, т. е. на скорость коррозионного процесса, определяется также в потенциостатическом режиме. Для этого снимаются анодные и катодные поляризационные кривые. В обще.м случае анализ формы поляризационных кривых и изучение характера их зависимостп от состава раствора, температуры, ингибирующих добавок позволяют получить довольно полные сведения о природе изучаемого электрохимического процесса, В зависимости от того, как влияют на кинетику электрохимической реакции конкретные ингибиторы и в какой степени замедляют ее, их делят на анодные, катодные или смешанные, В результате дополнительных графических построений, определяют точки саморастворения и затем скорость коррозионного процесса (г/(м ч), по формуле [c.179]


Смотреть страницы где упоминается термин Поляризационные кривые потенциостатические: [c.479]    [c.457]    [c.37]    [c.93]    [c.366]    [c.366]    [c.366]   
Коррозионная стойкость материалов (1975) -- [ c.42 ]

Теоретическая электрохимия Издание 3 (1975) -- [ c.398 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.42 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование потенциостатических поляризационных кривых

Поляризационная кривая

Потенциостатический метод снятия поляризационных кривых



© 2025 chem21.info Реклама на сайте