Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные приборы и вещества, применяемые в хроматографии

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]


    ГЖХ (см. гл. 15). Другие газообразные вещества, такие, как. углеводороды, лучше всего разделить при помощи ГЖХ. Метод газовой хроматографии применим и для разделения нелетучих соединений, если их можно превратить в стабильные летучие производные. Несмотря на то что существуют приборы, позволяющие разделять большие количества веществ, газовая хроматография не относится к числу совершенных препаративных методов. Основными достоинствами этого метода являются сравнительно высокая скорость анализа и возможность автоматизировать процесс, а главный недостаток — высокая стоимость, оборудования. В силу последнего обстоятельства финансирование этой области исследований осуществляют в основном нефтеперерабатывающие фирмы, которые могут позволить себе нести большие расходы. [c.31]

    Газо-жидкостная хроматография является очень гибким и перспективным методом, область применения которого значительно шире газо-адсорбционного. Он успешно применяется для разделения вы-сококипящих веществ, к которым относится большинство углеводородов. Дальнейшее изложение материала в основном базируется на газо-адсорбцнонной хроматографии. Однако то, что касается основных элементов аппаратуры н методики проведения анализа, применимо и к газо-жидкостной хроматографии. При этом следует иметь в виду, что метод газо-жидкостной хроматографии позволяет анализировать не только газы, но и жидкости. Поэтому для анализа жидких смесей могут применяться только приборы, снабженные, приспособлением для испарения введенных в колонку жидкостей и устройством для поддержания температуры колонки и детектора на уровне, исключающем конденсацию паров жидких компонентов анализируемой смеси. [c.94]

    Сами выделяемые вещества можно условно разделить на три основные группы газы, низкокипящие жидкости с температурами кипения до 150° С и высококипящие жидкости. Наиболее часто приходится иметь дело со второй группой веществ, и в этом случае улавливание удается осуществить достаточно просто и эффективно. Необходимую температуру конденсации можно определить по давлению насыщенного пара вещества. В условиях исследовательских лабораторий в большинстве случаев для охлаждения ловушек используют жидкий азот или твердую двуокись углерода, вследствие чего вещества не только конденсируются, но и замерзают. Это решение является наиболее эффективным и достаточно простым, но не всегда наиболее целесообразным. Следует учитывать, что при полупромышленном использовании препаративной газовой хроматографии применение жидкого азота, воздуха или твердой двуокиси углерода дорогостояще и часто неосуществимо из-за отсутствия этих хладоаген-тов, тем более, что во многих случаях высокой степени извлечения можно добиться, применяя более дешевые хладоагенты, например, лед или смесь льда с солью. Кроме того, при охлаждении до слишком низкой температуры ловушки быстро забиваются хлопьями или кристаллами замерзш его компонента. Это можно избежать, охлаждая ловушку только в момент выхода компонента, после чего ее размораживают и собранная фракция вещества стекает в сборную емкость. Именно такой динамический режим охлаждения — нагревания использован в системе улавливания хроматографа СКВ ИОХ АН СССР. В хроматографе Эталон-1 для этой цели регулируют подачу жидкого азота так, чтобы ловушка охлаждалась только до температуры, при которой происходит конденсация, но не замерзание отбираемого компонента. Кроме того, в этом приборе ловушка также может нагреваться после отбора компонента, вследствие чего [c.164]


    Для разделения сложных смесей летучих веществ с широким интервалом температур кипения обычно применяют газовую хроматографию с программированием температуры в процессе анализа. Недостаток такого типа отечественных приборов побудил использовать более простую возможность изменения температур путем использовапня нагревателей хроматографа Цвет-1 при работе с пламенно-ионизационным детектором. Путем различного сочетания нагревателей (основных 750 вт и дополнительного 1200 от) можно получить нелинейную программу температуры в среднем 2- -9° мин (рис. 1). [c.53]

    Кроме трех описанных основных способов осуществления хроматографического процесса, в некоторых случаях могут применяться другие приемы, облегчающие хроматографическое разделение смеси. Один из таких приемов основан на использовании зависимости адсорбируемости веществ от температуры. Скорость движения веществ в хроматографической колонке можно регулировать при помощи какого-либо нагревательного прибора или холодильника, передвигаемого вдоль колонки. Этот способ в отдельных случаях в молекулярной хроматографии может дать хорошие результаты. В ионообменной хроматографии, вследствие незначительного влияния температуры на процесс ионообменной адсорбции, этот способ не имеет значения. В распределительной хроматографии этот прием еще не применялся, хотя его применение вполне целесообразно, ввиду сравнительно большого влияниятемнературына растворимость веществ. [c.39]


Смотреть страницы где упоминается термин Основные приборы и вещества, применяемые в хроматографии: [c.284]    [c.196]    [c.39]    [c.418]    [c.438]    [c.196]   
Смотреть главы в:

Хроматографических анализ -> Основные приборы и вещества, применяемые в хроматографии




ПОИСК





Смотрите так же термины и статьи:

Основные приборы



© 2025 chem21.info Реклама на сайте