Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия при хроматографическом процессе

    Наибольшее распространение в неравновесной газовой хроматографии получили теория эквивалентных теоретических тарелок А. Дж. П. Мартина и диффузионно-массообменная теория Дж. Дж. Ван-Деемтера. Последнюю часто называют теорией эффективной диффузии. Обе теории основаны на допущении, что хроматографический процесс протекает в линейной области изотермы адсорбции (в ГАХ) или изотермы распределения (в ГЖХ). Количественной мерой размывания в первом случае является высота Я теоретической тарелки, во втором — эффективный коэффициент диффузии О фф. [c.47]


    Физико-химические основы хроматографического процесса. Основные понятия и определения. Изотермы адсорбции. Абсорбция газа. Диффузия в газовой фазе. [c.145]

    В теории эффективной диффузии рассматривается связь мас-сообмена я диффузии с процессами формирования хроматографической полосы. На форму хроматографического пика влияет движение анализируемых компонентов в потоке газа-носителя, обусловленное их коэффициентами диффузии. К размыванию хроматографической полосы исследуемого вещества также приводит то, что его молекулы, находящиеся в жидкой фазе, отстают от молекул, переносимых потоком газа. [c.289]

    Ниже мы рассмотрим, как эффективный коэффициент диффузии связан с другими параметрами, описывающими хроматографический процесс. [c.31]

    Перенос вещества через колонку нонита может происходить в равновесных или неравновесных условиях. Поэтому существуют теория равновесной ионообменной динамики сорбции и хроматографии и теория неравновесной динамики ионообменной сорбции и хроматографии. Отсутствие равновесия при хроматографическом процессе может быть вызвано в основном тремя причинами диффузией внутрь зерен ионита, диффузией через жидкую пленку (стр. 99), окружающую каждое зерно ионита, и кинетикой процессов сорбции — десорбции. [c.126]

    Газ-носитель и адсорбенты. Газ-носитель. Природа газа-носителя существенно влияет на качество разделения веществ и их определение. Основными требованиями, предъявляемыми к газу-носителю как подвижной фазе, являются следующие газ-носитель должен быть инертен по отношению к разделяемым веществам и сорбенту, поэтому не рекомендуется использовать, например, водород для элюирования ненасыщенных соединений, так как может происходить их гидрирование вязкость газа-носителя должна быть как можно меньшей, чтобы поддерживался небольшой перепад давлений в колонке коэффициент диффузии компонента в газе-носителе должен иметь оптимальное значение, определяемое механизмом размывания полосы (в ряде случаев последние два условия противоречат друг другу, тогда газ-носитель необходимо подбирать в соответствии с конкретной задачей анализа) газ-носитель должен обеспечивать высокую чувствительность детектора поскольку при проведении хроматографического процесса расходуется значительное количество газа-носителя, необходимо, чтобы он был вполне доступен газ-носитель должен быть взрывобезопасным выполнение этого требования особенно важно при использовании хроматографов непосредственно на технологических установках газ-носитель должен быть очищенным. [c.84]


    Член С определяется недостаточной скоростью массопереноса и возникающей вследствие этого не-равновесностью хроматографического процесса. Причинами этого могут быть медленная диффузия в неподвижной жидкой фазе, медленная адсорбция или десорбция с поверхности. В случае газо-жидкостной хроматографии постоянная С зависит от толщины неподвижного слоя жидкости, коэффициента диффузии растворенного вещества в этой жидкости и объема жидкости по сравнению с объемом подвижной фазы. Наибольщее влияние, по-видимому, оказывает толщина неподвижного слоя жидкости. Заметное повышение эффективности наблюдается на колонках с очень тонкими слоями жидкой фазы. Достижению равновесия способствует высокая температура и низкая вязкость растворителя. В общем случае зависимость ВЭТТ от V для газовой и жидкостной хроматографии имеет вид, представленный Яа рис. 28.5. [c.592]

    Продольная диффузия (величина В в ур. 5.1-19 особенно значима в газовой хроматографии по сравнению с другими хроматографическими процессами. Причина этого — высокие коэффициенты диффузии в газах, прим но в 10 раз больше, чем в жидкостях. Поэтому минимум функции Я(гГ) значительно более широкий и расположен при более высоких значениях линейной скорости потока подвижной фазы. [c.247]

    В тех случаях, когда хроматографический процесс определяется внутренней диффузией, число тарелок (в первом приближении) выражается как [c.59]

    Имеется пять основных факторов, определяющих величины Н к N для данного хроматографического процесса 1) вихревая диффузия, 2) массопередача в подвижной фазе, 3) продольная диффузия, 4) массопередача в пограничном слое подвижной фазы и 5) массопередача в неподвижной фазе. Для лучшего понимания и сознательного применения метода хроматографии эти факторы целесообразно рассмотреть более подробно. [c.462]

    Высота пика зависит от числа тарелок колонки и удерживаемого объема анализируемого вещества. Это объясняет, почему в анализе следов лучшие результаты получаются, когда время удерживания относительно мало, а эффективность значительна. Во время хроматографического процесса постоянно происходит разбавление со скоростью, которая по крайней мере равна скорости чистой молекулярной диффузии вдоль оси колонки. Чем короче продолжительность анализа, тем меньше дополнительное разбавление пробы в подвижной фазе. [c.40]

    Диффузия при хроматографических процессах в свою очередь подразделяется на две стадии внешнюю и внутреннюю. На стадии внешней диффузии элюируемые молекулы перемещаются в подвижной фазе и, достигая ее границы, адсорбируются. На стадии внутренней диффузии они находятся внутри зерен сорбента. Среди хроматографических процессов, идущих но диффузионной кинетике, часто встречаются такие, в которых одна из рассмотренных стадий диффузии протекает значительно медленнее дру- [c.18]

    В ряде хроматографических процессов скорости стадий внутренней и внешней диффузии сравнимы между собой, и кинетику процесса следует рассматривать как смешанную, т. е. лимитируемую обеими стадиями диффузии. [c.19]

    В случае, когда роли стадий внешней и внутренней диффузии сравнимы между собой, в описании хроматографического процесса должна быть отражена связь между диффузионными потоками по обе стороны границы раздела фаз. В соответствии с этим система I.III должна принять следуюш ий вид  [c.24]

    Определение коэффициента продольной диффузии ля различных систем уравнений, описывающих хроматографический процесс [c.37]

    Молекулярная диффузия. В процессе разделения в хроматографической зоне всегда существует градиент концентраций в газовой фазе, и, следовательно, в газовой фазе постоянно протекает процесс молекулярной диффузии, приводящий к расширению хроматографического пика. Вклад молекулярной диффузии в уравнении Вап-Деемтера выражается вторым членом [c.33]

    Величина гранул адсорбента также оказывает заметное влияние на ход хроматографического процесса. С уменьшением их размеров повышается скорость диффузии молекул к поверхности адсорбента и сокращается продолжительность процесса. Однако это сопровождается нежелательными явлениями увеличением гидравлического сопротивления слоя адсорбента и повышением уноса адсорбента проходящим потоком жидкости. Найдено, что для силикагелей и алюмосиликатных катализаторов в промышленных условиях наиболее целесообразно использовать гранулы диаметром 0,25 — [c.214]

    Тарелочная теория позволяет оценить характеристики колонки, но она не дает какого-либо объяснения действительному поведению вещества в колонке. Как и Вильсон, Мартин и Синдж установили, что скорость подвижной фазы должна быть оптимальной, и пришли к выводу, что ВЭТТ зависит от квадрата диаметра частиц слоя. Кроме того, они установили, что значительное влияние на размывание полос оказывает диффузия растворенного вещества, непостоянство коэффициентов распределения при повыщенных концентрациях и снижение эффективности разделения из-за неравномерности потока, проходящего через колонку. Таким образом, к началу 40-х годов по крайней мере качественно были определены основные факторы, влияющие на хроматографический процесс. В последующие два десятилетия эти положения были детально развиты, что [c.28]


    В теории тарелок реальный непрерывный хроматографический процесс был заменен эквивалентным по результатам идеальным равновесным периодическим процессом, при котором размывание полосы компонента в газе-носителе вызывалось последовательной серией равновесных распределений этого ком-аонента между подвижной газовой и неподвижной твердой или жидкой фазалш на отдельных ступенях колонки. В начале предыдущего параграфа (см. стр. 575) было отмечено, что физические причины размывания хроматографической полосы различны они связаны как с процессами диффузии в движущемся газе [c.580]

    В изложенном выше теоретическом подходе предполагалось, что равновесие устанавливается мгновенно. Однако в реальном хроматографическом процессе оно устанавливается за определенное время и поэтому хроматографическая полоса (пик) при движении вдоль колонки размывается. Это происходит вследствие ряда динамических и кинетических причин. Во-первых, сказывается продольная диффузия (вдоль и навстречу потоку подвижной фазы) молекул адсорбирующегося вещества, перенос и диффузия вокруг зерен адсорбента, а также диффузия в поры адсорбента (внутренняя диффузия). Кроме того, молекулы компонен- [c.24]

    Одна из главных задач теории неравновесной хроматографии — изучение причин размывания хроматографических полос. Это явление может быть обусловлено диффузионными и кинетическими факторами. Их влияние на процесс разделения может быть настолько велико, что даже при значительной разнице коэффициентов распределения вещества могут не разделиться. Явление размывания полос в реальной хроматографической колонке очень сложно и может быть описано лишь приближенно на основе теорий, устанавливающих зависимость между мерой размывания и указанными факторами. Для описания неравновесной ГХ чаще всего используются теория теоретических тарелок и теория эффективной диффузии. Обе теории основаны на допущении о том, что хроматографический процесс протекает в линейной области изотермы распределения (п ГЖХ) или изотермы адсорбции (в ГАХ), Количественной мерой размывания в первом случае является высота теоретической тарелки Н, во втором — эффективный коэффициент диффузии Дэфф. [c.334]

    Кроме уменьшения времени удерживания с повышением температуры значительно возрастают коэффициенты диффузии как в газовой, так и в жидкой фазе. Повышение коэффициентов диффузии увеличивает скорость массопередачи, т. е. уменьшает нерав-новесность хроматографического процесса и тем са- [c.624]

    Идти дальше по пути словесного описания явлений слишком сложно, поэтому воспользуемся введеппым выше приемом представления хроматографических зон с помош ью диаграмм. На рис. 4 слева вверху представлена исходная зона, для которой К = (заштрихованный и незаштрпхованный участки диаграммы одинаковы). Описанные выше перераспределения вещества возникают сразу же, как только подвижная фаза начинает покидать исходную зону, и происходят непрерывно. Такую ситуацию наглядно иллюстрировать трудно. Воспользуемся обычным приемом математического анализа. Представим себе вначале, что процесс идет скачкообразно, а зател будем постепенно уменьшать величины скачков до тех пор, пока не приблизимся (в пределе) к естественному плавному течению хроматографического процесса. Для наглядности скачки на рис. 4 выбраны максимальными — на всю ширину хроматографической зоны. Вообразим, что вся подвижная фаза исходной зоны мгновенно перемещается на соседний участок колонки (ширина зоны сразу удваивается), а затем остается там до тех пор, пока на обоих участках за счет поперечной диффузии не установится равновесие. Результат этого скачка представлен диаграммой во второй строке левого столбца. Легко понять, что для выбранного характера распределения между фазами (К = 1) оба участка будут выглядеть одинаково и на каждом из них будет находиться половина исходного материала зоны, поровну распределенного между неподвижной и подвижной фазами. [c.20]

    Каждая отдельная дисперсия вносит свой вклад в суммарную дисперсию, т. е. в расширение хроматографической зоны. Приведенные выражения позволяют понять характер влияния выбора параметров хроматографического процесса на ширину зоны, т. е. содержат в себе очень важную практическую информацию. Наг рпмер, легко видеть, что с увеличением диаметра гранул зона расширяется как за счет неоднородности тока жидкости, так и особенно за счет неравновесности распределения молекул вещества по объемам подвижной и неподвижной фаз. Эта неравновесность будет сказываться тем меньше, чем больше значения коэффициентов диффузии и Оа, т. е. чем легче диффундирует вещество. С другой стороны, облегчение диффузии (увеличение и О ) влечет за собой раси]и-рение зоны за счет продольной диффузии (особенно в подвижной фазе). Скорость элюции и) также влияет двояким образом. С ее увеличением вклад продольной диффузии в расширение зоны умень-шается, зато сильнее сказываются все неравновесности распределения. Наконец, все факторы без исключения увеличивают дисперсию зоны пропорционально длине колонки L. Отсюда следует, что движение хроматографической зоны вдоль колонки в неидеальных условиях связано с непрерывным расширением зоны. Это должно нас насторожить в отношении целесообразности увеличения длины колонки. [c.29]

    Чем меньше величина Я, тем лучше работает колонка. В современных колонках добиваются того, что Я = (1 -н 2) т. е. величине Я отвечает размер порядка малых долей миллиметра. Отсюда появилось наглядное представление о тонком диске, как бы вырезанном из колонки. Его образно назвали теоретической тарелкой , а величину Я именуют высотой теоретической тарелки . Исторически этот термин появился при рассмотрении людели хроматографического процесса, где непрерывную элюцию заменяли малыми скачкообразными продвижениями зоны, подобно тому как это было сделано выше в методе диаграмм. Кстати, с помощью этого метода понятию теоретической тарелки можно придать наглядный смысл. Как было установлено при сопоставлении диаграмм рис. 5, с уменьшением ширины гипотетического скачка, описывающего продвижение зоны вдоль колонки, меняется и форма зоны, в частности степень ее расширения. Представим себе, что при хроматографировании определенного вещества в реальных условиях мы экспериментальным путем нашли закон расширения зоны, а затем подобрали ширину теоретического скачка так, чтобы расширение, описываемое методом диаграмм, следовало бы точно такому же закону. Ширина этого скачка и отвечает понятию высоты теоретической тарелки Я. В методе диаграмм мы не принимали во внимание продольной диффузии, однако можно себе представить, что существует более сложная модель скачкообразного движения зоны, учитывающая все факторы, ведущие к размыванию зоны. Ширина эквивалентного скачка в этой модели может служить наглядной иллюстрацией понятия о величине Я. [c.32]

    Однако ситуация коренным образом меняется, если компоненты исходной смеси разбиваются на группы, существенно различаю-пцгеся между собой по степени, сродства к неподвижной фазе (А), а следовательно, п по скорости миграции. Очевидно, что такие ком- поненты будут выходпть пз колонки соответствующими группами, разделенными значительными объемами пустого элюента. Это пе-оправданно затягивает хроматографический процесс и ведет к ухудшению разрешения внутри позади идущих групп в результате диффузии. Но этим не исчерпываются неблагоприятные последствия описываемой ситуации. Очевидно, что она не позволяет выбрать состав элюента п другие параметры элюции такнм образом, чтобы они оказались оптимальными для различных групп кодшонентов, как это видно из рис, 12. В случае А условия элюцпи оптимальны для комиоиентов группы 2, и они хорошо разрешаются, но для компонентов группы 1 элюент оказывается слишком сильным среднее для этой группы значение К будет мало, Я —- соответственно велико, а разрешение Я, согласно (21), окажется малым. Компоненты группы 1 покинут колонку, не успев отделиться друг от друга. В случае В условия элюции оптимальны для группы 1, зато компоненты группы 2 будут выходить замедленно, в виде очень расплывшихся пиков их разрешение тоже окажется неудовлетворительным. [c.41]

    В хроматографических процессах, согласно уравнению Ван-Деемтера, существует оптимальная скорость потока, при которой колонка имеет наиболее высокую эффективность. Для большинства экскпюзионных колонок с размером частиц Юмкм она составляет около 1 мл/мин. При повышении скорости потока ВЭТТ возрастает, главным образом, за счет удшения масообмена. В эксклюзионной хроматографии этот процесс выражен наиболее резко, так как коэффициенты диффузии сильно снижаются при повышении молекулярной массы. Отсюда также следует, что снижение эффективности в наибольшей степени наблюдается для высокомолекулярных фракций. [c.50]

    Рассматриваемое размывание зоны в даиисм случае ограничивается учетом лишь статистических эффектов. При использовании такой идеализированной модели пренебрегают любыми эффектами диффузии из фазы в фазу и несовершеиством фаз. Несмотря на столь явное упрощение, такая модель, несомненно, полезна для изучения хроматографических процессов. Вместо метода. Монте-Карло для статистического анализа хроматографического процесса можно использовать "цепи Маркова". [c.88]

    В газовой хроматографии подвижную фазу рассматривают как инертную считается, что она не вступает во взаимодействие ни с веществом, ни с неподвижной фазой. Следовательно, природа подвижной фазы — газа не оказывает влияния на процессы распределения или адсорбции — десорбции и газ-носитель не влияет на селективность. Его влияние на хроматографический процесс сказывается через эффективность колонки, котофая зависит от разницы в скоростях диффузии веществ в газах [член В уравнения Ван-Деемтера (1.53)]. Природа газа-носителя влияет на продолжительность анализа, поскольку оптимум скорости потока различен для разных газов и время удерживания уменьшается с уменьшением коэффициентов диффузии, вещества. Оказывает влияние также и определенное ограничение давления, обусловленное разницей вязкости газов. Принимаются во внимание и такие обстоятельства, как стоимость газа, его чистота, безопасность и обеспечение максимальной чувствительности используемых детекторов. Исходя из этого в газовой хроматографии используют ограниченный набор газов азот, водород, аргон и гелий. [c.114]

    Левая часть имеет размерность козффициента диффузии и уравнение в целом напоминает уравнение диффузии Эйнштейна. Поэтому А можно рассматривать как положительное или отрицательное смещение вещества относительно максимума полосы, вызванное диффузией. В самом деле, расширение полосы при хроматографии можно рассматривать как диффузионную задачу [2, 33], причем такая трактовка ближе к физической реальности, чем рассмотренная нами выше модель. В случае газовой хроматографии удается, например, определенные осложнения (неравномерность упаковки, продольная диффузия, замедленное установление равновесия) рассматривать отдельно и учитывать вклад каждого из них в суммарный зффект, который можно непосредственно связать с величиной Н [11, 16, 23, 34—36] и таким образом дать Н молекулярно-кинетическую трактовку Обсуждение всех точек зрения, существующих в зто л отношении в хроматографии, выходит за рамки настоящей главы. Нам хотелось бы в заключение указать, что при проведении и анализе хроматографических процессов никоим образом не следует игнорировать фактор времени он выступает не только в скорости перемещения вещества и фронта, но и в явлении расширения полосы. Формально простая связь между зтими величинами существует только при равномерном движении растворителя. [c.102]

    Хроматографический процесс может соответствовать разделительному процессу в лотке Сигнера лишь в том случае, когда условия опыта принципиально идентичны. При хроматографии в тонких слоях, в ее обычной форме, зто предположение не выполняется в начале опыта колонка не содержит растворителя и имеется возможность размытия вещества в результате поперечной диффузии. При теоретическом рассмотрении этим различием не следует пренебрегать. Аналогичная проблема возникает, естественно, и при хроматографии на бумаге. Излагаемый ниже анализ основан поэтому на опытах, проведенных обоими методами. Параллельно с этим имеются различия между хроматографией в тонких слоях и хроматографией на бумаге. Кратко коснемся также этого вопроса и в заключение укажем на практически важную связь между хроматографией в тонких слоях и колоночной хроматографией. [c.107]

    Временная ширина пробы, введенной в виде пробки, должна быть малой по сравнению с расстоянием между двумя самыми близко элюируемыми зонами смеси с тем, чтобы эти зоны не перекрывались. В действительности же во время их элюирования через колонку зоны компонентов смеси размываются и их максимальная концентрация уменьшается, поэтому требуется, чтобы ширина пробки пробы была довольно малой по сравнению со средней шириной двух самых близких зон. Размывание зон обусловливается молекулярной диффузией и сопротивлением массопередаче, что обсуждается далее в гл. 4, в то время как разбавление зон происходит в соответствии со вторым началом термодинамики хроматографическое разделение компонентов смесн сопровождается их одновременным разбавлением га-зом-носителем, поэтому во время хроматографического процесса результирующее уменьшение энтропии отсутствует. [c.15]

    Указанные соображения побудили многих исследователей заняться выводом уравнений, связывающих важные факторы диффузии и скорости с эффективностью колонки, рассчитанной на основе теории распределения. Глюкауф [12], Гиддингс с сотрудниками [5—9, 24], Кон [17] и Бейнон [2] вывели уравнения, основанные на различных моделях ВЭТТ хроматографического процесса. Учитывая сложность и разнообразность аргументов, используемых названными авторами для обоснования выведенных ими уравнений, отсылаем читателя для детального ознакомления с последними оригинальными работами. [c.109]

    Унрош,ения в описании хроматографического процесса, рассмотренные в предыдуш,ем параграфе, связаны с различными моделями его гидро(аэро)динамики. Многие конкретные разновидности хроматографии допускают также унрош,епия и в описании кинетики процесса. При этом обмен молекулами анализируемого веш,ества между фазами хроматографической системы -удобно рассматривать как гетерогенный процесс, понимая под гетерогенными превраш,ения, происходящие на границах раздела фаз. Гетерогенные процессы состоят из нескольких стадий. Первой из них является стадия переноса частиц, участвующих в процессе, к месту гетерогенного превращения. В хроматографии — это перенос молекул исследуемого вещества к границе раздела фаз в результате молекулярной диффузии и совокупности ряда гидро-(аэро)динамических факторов. На второй стадии процесса происходит собственно гетерогенная реакция. В хроматографии — это сорбция-десорбция элюируемых молекул. Третья стадия заключается в отводе прореагировавших частиц от места реакции. В хроматографии — это отвод сорбированных или десорбированных молекул от границы раздела фаз. Суммарная скорость гетерогенного процесса контролируется скоростью наиболее медленной стадии. В том случае, когда медленной стадией является подача или отвод реагентов, говорят, что реакция характеризуется диффузионной кинетикой. Если наиболее медленной является стадия химического или физического превращения, то она и определяет скорость реакции. А когда скорость переноса реагентов и происходящих с ними превращений сравнимы между собой, говорят о гетерогенных реакциях смешанного типа. Большинство хроматографических процессов, в которых суть гетерогенного превращения состоит в переходе элюируемых молекул из подвижной фазы в неподвиншую и обратно, характеризуются диффузионной кинетикой. В адсорбционной хроматографии этот переход сопровождается энергетическим взаимодействием с поверхностью сорбента. [c.18]

    Малые его значения Кй <С 1) показывают, что поровое пространство сорбента либо почти недоступно для макромолекул (например, из-за малого размера пор или термодинамической несовместимости данных макромолекул с матрицей сорбента), либо оно само по себе невелико. В этом случае макромолекулы проводят в неподвиншой фазе незначительную часть времени по сравнению со всем временем их пребывания в хроматографической системе. Поэтому при малых значениях Кб, естественно ожидать, что кинетика хроматографического процесса лимитируется внешнедиффузионной стадией. С возрастанием Кд, роль этой стадии начинает уменьшаться, а внутридиффузиопной увеличиваться. При значениях Кй > 1 стадия внутренней диффузии становится лимитирующей. [c.19]

    Упрощение в математическом описании хроматографического процесса при переходе от системы дифференциальных уравнений I.I к системе уравнений I.III сопровождается введением ряда новых параметров. Эти параметры подлежат дополнительному определению либо экспериментальным, либо теоретическим путем, а чаще — сочетанием того и другого. Наиболее сложным является определение коэффициентов продольной диффузии, входящих в уравнения систем I.II и I.III и в соответствующие выражения для статистических моментов. Для их отыскания будем считать, что молекулы элюируемого вещества, находясь в потоке подвижной фазы, совершают случайные перемещения в продольном направлении, шаг которых I может быть определен следующим образом  [c.37]

    По классификаци11 Гиддингса [13], тонкослойная хроматография (ТСХ) представляет собой зонный неэлютивный хроматографический процесс. В отличие от элютивной колоночной хроматографии (КХ) при ТСХ время движения по хроматографическому слою одинаково для всех компонентов анализируемых веществ, а их разделение происходит вследствие различия во времени пребывания в подвижной и неподвижной фазах хроматографической пластинки. В результате при ТСХ хроматографическое размывание за счет факторов подвижной фазы (продольной диффузии, внешнедиффузионной массопередачи) связано с подвижностью компонентов. В то же время в КХ подобное размывание у всех компонентов одинаково. [c.255]

    Для колонок характерно очень высокое отношение высоты слоя к диаметру. Продольный перенос (сопровождаемый продольной диффузией) велик по сравнению с радиальной диффузией, ограниченной стенками колонки. В тонком слое мы имеем по существу двумерный слой, в котором диффузия в направлении, перпендикулярном сравнительно небольшому продольному переносу вешества, не ограничена. Следовательно, в тонких слоях размывание полосы происходит и в продольном и в радиальном направлениях. Открытость тонких слоев имеет как ценные преимущества, так и некоторые важные недостатки. Так, очень важное значение имеет следующее обстоятельство из-за открытости тонких слоев не представляется возможным значительно изменять скорость подвижной фазы, которая определяется вязкостью и поверхностным натяжением элюента, а также температурой и геометрией камеры, в которой проводится хроматографирование. Кроме того, скорость движения элюента обычно уменьшается с увеличением расстояния от точки старта. В результате разделяемые вещества сначала подвергаются действию быстро движущегося потока подвижной фазы, скорость которого, вероятно, намного выше оптимальной. В итоге экспериментатор почти не может контрошро-вать одну из наиболее важных переменных величин хроматографического процесса. [c.46]

    Однако особенно плодотворной для изучения кинетики адсорбции оказалась теория газоадсорбционной хроматографии, подробно разработанная рядом чехословацких исследователей, с использованием метода моментов, широко применяемого в статистике. Впервые метод моментов для анализа хроматографических процессов был предлон ен Туницким. Теория моментов, используемая для решения линейных задач газоадсорб-циопной хроматографии, позволяет по форме хроматографического пика учесть действие продольной диффузии в газовой фазе, радиальной диффузии внутри поры частицы катализатора и конечной скорости адсорбции молекулы внутренней поверхностью поры. Опубликованные к настоящему времени работы показали большие возможности газовой хроматографии в исследовании процессов переноса и кинетики адсорбции на катализаторах. Попытка использования этого метода для изучения кинетики хемосорбции до последнего времени встречала, однако, серьезные затруднения из-за нелинейности обычной изотермы хемосорбции даже в области сравнительно невысоких парциальных давлений адсорбата. Поэтому, строго говоря, кинетику хемосорбции нельзя описать системой линейных дифференциальных уравнений. Переход же в линейную область путем значительного снижения концентрации адсорбата может быть осложнен влиянием неоднородности поверхности. В связи с этим большой интерес представляет оригинальная изотопная методика определения скорости хемосорб-ции водорода, описанная в главе четвертой, в которой показана возможность обработки экспериментальных данных по кинетике хемосорбции в случае нелинейных изотерм с использованием аппарата теории моментов. Б дальнейшем, по-видимому, эту идею можно будет обобщить на другие системы путем применения к ним методов, близких методам описания вэ- [c.5]


Смотреть страницы где упоминается термин Диффузия при хроматографическом процессе: [c.189]    [c.39]    [c.45]    [c.162]    [c.183]    [c.43]    [c.46]    [c.6]   
Хроматография полимеров (1978) -- [ c.18 , c.36 , c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Определение коэффициента продольной диффузии для различных систем уравнений, описывающих хроматографический процесс

Процесс диффузии

Хроматографический процесс



© 2025 chem21.info Реклама на сайте