Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ожидаемые спектры электронного парамагнитного резонанса

    Таким образом, спектры электронного парамагнитного резонанса позволяют получить доказательства резонансных взаимодействий в системах с нечетным числом электронов и в особых системах, которые получаются присоединением электронов к обычным молекулам. Резонансные эффекты в этих случаях должны быть больше, чем в обычных молекулах с четным числом электронов (см, раздел 2-5), так что полученные наблюдения не имеют прямого отношения к проблеме сверхсопряжения в последних. Трудно также установить прямую связь между резонансными взаимодействиями, которые наблюдаются в спектрах электронного парамагнитного резонанса, и резонансными взаимодействиями, существенными для-химии (т, е. такими, которые нельзя объяснить в рамках представления эквивалентных орбит). Данные, полученные для ионов-радикалов, еще менее связаны с химическими данными — в этих случаях не приходится ожидать, чтобы картина локализованных связей была удовлетворительной (мы остановимся на этом вопросе более подробно в разделе 5-6). [c.104]


    В случае неорганических реакций в твердом состоянии механизм необходимой при этом диффузии через кристаллическую решетку достаточно хорошо изучен. Атомы металлов или небольшие ионы реагирующих веществ перемещаются из своих положений либо в междуузлия решетки, либо в вакансии решетки. Интересно, например, что в реакциях окислов щелочноземельных элементов с различными солями скорость процесса зависит только от природы окисла [56]. Это можно объяснить тем, что такие анионы, как СОд , S0 , РО4 , слишком велики, чтобы в значительной мере участвовать в процессе диффузии. Следует поэтому ожидать, что в случае органических молекул, более крупных и сложных, чем эти анионы, энергия активации для диффузии в кристаллическом состоянии должна быть весьма высокой. Некоторым доказательством в пользу этого может служить постоянство (в течение нескольких месяцев) анизотропии спектра электронного парамагнитного резонанса различных органических кристаллов, таких, как глицин [c.245]

    Если считать, что карбен (II) существует, подобно дифенил-карбену, в триплетном состоянии, можно ожидать появления хиноидной формы (III) вследствие спаривания двух из четырех неспаренных электронов. Спектр электронного парамагнитного резонанса (ЭПР-спектр) предварительно облученного твердого раствора соединения I в дибензоилэтане при —196° указывает на небольшое спин-сниновое взаимодействие, что согласуется со структурой III. ЭПР-спектр продуктов фотолиза 1,3-бмс-(а-ди-азобензил)-бензола мета-шгоиер соединения I) оказался совершенно иным [11а].  [c.247]

    Возможно, также, что атом брома вместо атаки молекулы олефина атакует я-комплекс, образовавшийся из олефина и НВг, — направление, также ведущее к стерео-специфическому присоединению. Подобный механизм менее удовлетворительно объясняет уменьшение стереоспецифичности с повышением температуры. Недавно Абель и Пьетт [109] исследовали спектры электронного парамагнитного резонанса промежуточных радикалов, получающихся в процессе инициированного ультрафиолетовым светом присоединения бромистого водорода к разЛичным ациклическим и алицикличе-ским олефинам при низких температурах. Можно было ожидать получения однозначных выводов относительно структуры промежуточных радикалов, что позволило йы объяснить стереохимию процесса присоединения. Использование DBr вместо НВг подтвердило, что присоединение атома брома — начальная стадия процесса, так как спектры в каждом случае были одинаковы. Однако установить с несомненностью структуру промежуточного соединения было невозможно, хотя эти исследователи утверждают, что образование мостиковой структуры 20 вполне согласуется с их наблюдениями. [c.367]


    Можно ожидать, что сигнал электронного парамагнитного резонанса свободного электрона представляет собой синглет. Такой спектр был получен в растворе натрия в жидком аммиаке Шульте-Фролинде наблюдал характерный снектр ЭПР в у-облученных [c.466]

    Мономеры, имеющие неспаренный электрон, затем, по-видимому, димеризуются с образованием диамагнитных продуктов [М2(ННз)г]. С повыщением концентрации примерно до 0,5 М расстояние между ионами металла сокращается до 10А, так что их внешние орбитали могут перекрываться с образованием зоны проводимости. Следовательно, можно ожидать, что концентрированные растворы будут напоминать расплавленные металлы (разд. 4.8), и это подтверждено наблюдаемыми свойствами этих растворов (например, определением чисел переноса, спектрами ядерного магнитного резонанса и электронного парамагнитного резонанса). Такой раствор поэтому является удобным источником электронов и очень сильным гомогенным восстановителем, имеющим рассчитанный стандартный восстановительный потенциал— 1,95 в при 25° (ср. табл. 8.3 и 8.5). Например, он способен восстанавливать многие соединения до свободных элементов, до интерметаллических соединений (разд. 4.11) или до го-мополиатомных анионов, содержащих восстановленные элементы, например из РЫг получено соединение [Ма(КНз)9][РЬ(РЬ)8]. Эти растворы очень реакционноспособны. Кислород реагирует с ними, образуя высшие окислы, такие, как КО2, окись азота образует гипонитриты МгНгОг. С участием этих растворов можно осуществить многие важные реакции, например [c.329]


Смотреть страницы где упоминается термин Ожидаемые спектры электронного парамагнитного резонанса: [c.69]    [c.475]   
Смотреть главы в:

Секторы ЭПР и строение неорганических радикалов -> Ожидаемые спектры электронного парамагнитного резонанса

Секторы ЭПР и строение неорганических радикалов -> Ожидаемые спектры электронного парамагнитного резонанса




ПОИСК





Смотрите так же термины и статьи:

Парамагнитные ЭПР-спектры

Резонанс парамагнитный

Спектры электронные

Электронный парамагнитный

Электронный парамагнитный резонанс

Электронный резонанс



© 2025 chem21.info Реклама на сайте