Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные структуры молекул и промежуточных соединений

    Все предложенные до настоящего времени теории зарождения и роста НК и пленок игнорируют реальное состояние поверхности раздела, участие во многих случаях химических реакций в процессе кристаллизации из газовой фазы, следствием которых является наличие слоя хемосорбированных молекул на поверхности раздела. При наличии хемосорбции непосредственный обмен между подложкой и средой практически отсутствует и хемосорбционный слой в известном смысле можно считать промежуточной двумерной фазой . Рост кристалла в этом случае, по-видимому, происходит в результате актов химического распада молекул хемосорбционного слоя, механизм которых совершенно не изучен. Особая трудность возникает при обсуждении возможных механизмов роста эпитаксиальных пленок сложных соединений при жидкофазном осаждении в связи с тем, что молекулярная форма нахождения большинства этих соединений в растворах и расплавах в настоящее время неизвестна. Поэтому единой достаточно удовлетворительной теории зарождения и роста НК и пленок при газофазном осаждении пока не существует. Необходимо дальнейшее накопление надежных экспериментальных данных о реальной структуре (атомной и электронной) поверхностей раздела, о явлении хемосорбции, о так называемой закомплексованности и других определяющих явлениях. Важным также в теории гетерогенного зародышеобразования пленок является установление соотношения между процессами статистического зародышеобразования на чистых подложках и на активных центрах. Имеются сведения (Л. С. Палатник и др. 1972 г.) об образовании и длительном существовании в тонких пленках термодинамически неравновесных фаз. Поэтому пределы применимости к тонкопленочным системам (приборы микроэлектроники, оптические покрытия и др.) диаграмм состояний, разработанных для систем массивных материалов, требуют подробного анализа и обсуждения. [c.485]


    Представления Ингольла о мезомерии вошли как составная часть в теорию резонанса, разработанную в 1928—1938 гг. Л. Полингом. Согласно Полингу, молекулу можно описать как быстро флуктуирующую между двумя электронными формулами (резонирующими структурами) и приобретающую стабильность большую, чем любая из этих формул, благодаря резонансной энергии этой флуктуации. В настоящее время теория резонанса (концепция мезомерии — резонанса) трактуется как способ качественного описания распределения электронной плотности в молекулах органических соединений с сопряженными связями. Это распределение электронной плотности по связям и атомам изображают при помощи нескольких классических структурных формул (канонических структур, или резонансных граничных структур). Реальная молекула рассматривается как резонансный гибрид , в котором распределение электронной плотности является промежуточным между распределением электронной плотности в резонансных граничных структурах. Например, бензол может быть изображен пятью резонансными структурами  [c.31]

    Электронные структуры молекул и промежуточных соединений [c.19]

    Рассмотрение действия алкогольдегидрогеназы показывает, что при образовании промежуточного соединения фермент—субстрат не одна, а несколько функциональных групп фермента вступают во взаимодействие с соответствующими группами молекулы субстрата. Некоторые пары взаимодействующих групп непосредственно участвуют в реакции, катализируемой ферментом. Остальные группы служат в основном для ориентированного, относительно стабильного прикрепления молекулы субстрата к поверхности фермента. Связи этих групп влияют существенным образом на эффективность каталитической реакции, специфически повышая реакционную способность промежуточного комплекса разными путями, например изменением электронной структуры молекулы субстрата или деформацией валентных связей между атомами этой молекулы. [c.216]

    Квантовохимические расчеты кластерных моделей адсорбционных комплексов позволяют проанализировать перестройку электронной структуры молекулы при взаимодействии с активным центром катализатора и характер возникающей хемосорбционной связи. Поскольку снижение энергии активации в каталитическом акте связано с ослаблением перестраивающихся внутримолекулярных связей, стабилизацией активированного комплекса или промежуточных соединений, оценивая соответствующие энергетические параметры или индексы реакционной способности, коррелирующие с ними, можно сделать вывод об относительной эффективности катализаторов. [c.135]


    Более сложен механизм гетерогенного катализа. В этом случае существенную роль играет поглощение поверхностью катализатора реагирующих частиц. Процесс также протекает в несколько стадий. Начальными стадиями являются диффузия частиц исходных реагентов к катализатору и поглощение частиц его поверхностью (активированная адсорбция). Последний процесс вызывает сближение молекул и повышение их химической активности, прн этом под влиянием силового поля поверхностных атомов катализатора изменяется структура электронных оболочек молекул н, как следствие, понижается активационный барьер. В результате на катализаторе происходит реакция. Затем продукты взаимодействия покидают катализатор и, наконец, в результате диффузии переходят в объем. Таким образом, в гетерогенном катализе образуются промежуточные поверхностные соединения. [c.225]

    Однако необходимо учитывать еще дополнительные структуры. Для того чтобы объяснить сильное активирующее влияние КНа-группы в реакциях электрофильного замещения в ароматическом ряду (разд. 11.18), мы считали, что промежуточно образующийся карбониевый ион стабилизуется за счет структур, в которых имеется двойная связь между атомом азота и кольцом, таким путем указывали на тенденции азота к обобществлению своей четвертой пары электронов и к размещению положительного заряда. Обычно считают, что ЫНа-группа стремится разделить электроны с кольцом не только в ионе карбония, образующемся в качестве промежуточного соединения в реакциях электрофильного замещения в ароматическом ряду, но также в самой молекуле анилина. [c.710]

    Промежуточное соединение, возникающее на Мо +, имеет больше двух, но меньше трех электронов на я-орбиталях и может образовывать бирадикальную структуру при резонансе этих электронов, что создает возможность образования 2,5-дигидрофурана и малеинового ангидрида при внутримолекулярной циклизации бутадиена- 1,3. Такая циклизация затруднена, если промежуточное соединение бутадиена образуется с Ti +, так как оно имеет не более двух электронов на орбиталях. Это промежуточное соединение ведет к разрыву связи i—Сг в молекуле бутадиена-1,3 и к образованию СОг  [c.63]

    Из рассмотренного материала следует, что основная сущность кислотного катализа заключается в активирующем действии протона, образующего с реагентом активную частицу промежуточного типа, как отдельное термодинамическое образование. Являясь сильным акцептором электронной пары, протон, по-видимому, производит перераспределение и разрыхление энергий связи, в результате чего молекул а-донор электронной пары становится более реакционноспособной, чем исходное соединение. В принципе подобное же возмущение в структуре молекулы может в той или иной мере вызвать любой другой акцептор катион, апротонная кислота и оказаться катализатором. [c.269]

    Для подбора катализаторов каждая теория предлагает свои более детальные указания, вытекающие из развиваемых данной теорией представлений о механизме катализа теория промежуточных соединений предлагает сопоставлять теплоты предполагаемых промежуточных стадий с теплотой реакции мультиплетная теория к этому добавляет необходимость учета структурного соответствия между кристаллической решеткой катализатора и участвующими в реакции молекулами электронные теории выдвигают на первый план такие параметры катализаторов, как работа выхода электронов, ширина запрещенной зоны в полупроводниках-катализаторах, электропроводность, магнитная восприимчивость, степень заполнения -уровней и др. Эти предложения обосновываются каждой теорией на основании фактического материала, полученного в специально поставленных исследованиях или взятого из литературы. По-ви-Димому, большинство перечисленных параметров действительно имеет значение для характеристики каталитических свойств, причем для отдельных групп реакций выступает на первый план тот или иной параметр. Это объясняет возможность наблюденных корреляций между значениями параметра и каталитическими свойствами в пределах некоторой ограниченной группы реакций и катализаторов. Попытки распространить предложения той или иной теории на все каталитические процессы или даже на один из двух указанных выше типов каталитических реакций неизбежно наталкиваются на противоречия. Кроме того, для непосредственного применения выводов существующих теорий катализа при поисках катализаторов нужно чрезвычайно много знать о катализаторах и каталитических реакциях (например, структуру и параметры реагирующих молекул и катализаторов, энергии связи с катализатором атомов, входящих в реагирующие молекулы, теплоты хемосорбции реагирующих веществ и кинетику ее, электронные характеристики катализаторов и т. п.). Исследователи, занимающиеся [c.8]


    Молекула нафталина — плоская и все ее 10 я-электронов в соответствии с правилом Хюккеля располагаются на связывающих молекулярных орбиталях, занимая их полностью. Экспериментально найденная энергия сопряжения нафталина составляет около 255 кДж на моль, и если ее пересчитать на один я-электрон, то окажется, что она примерно такая же, как и для бензола — 25—26 кДж. Тем не менее нафталин значительно менее устойчив и более реакционноспособен, чем бензол. Объясняется это тем, что лимитирующим этапом большей части реакций ароматических соединений является образование промежуточного продукта присоединения реагента — а-комплекса (см. гл. 2). В случае бензола образование этой частицы идет с разрушением ароматического секстета электронов и потерей значительной части энергии сопряжения. При образовании а-комплекса из нафталина потеря этой энергии заметно меньше, так как в смежном кольце образуется ароматическая бензольная структура — замкнутое десяти-я-электронное облако перестраивается в шести-я-электронное. [c.27]

    Кроме названных соединений водорода, имеются промежуточные по свойствам между летучими и солеобразными гидридами, к которым относятся соединения бериллия, магния и элементов 1ПА-группы. По своей структуре это 1зещества, состоящие либо из димерных — (ВНз)2, (ОаНз)2, либо из полимерных молекул — (ВеН2) , (А1Нз) и т. д., в которых атомы элемента связаны друг с другом через атомы водорода Э—Н—Э. Такая связь называется трехцентровой, так как общая пара электронов занимает молекулярную орбиталь, охватывающую три атома мостиковый атом водорода и оба атома элемента. И из-за того, что число общих электронных пар между атомами меньше числа возможных связей между ними, такие вещества относятся к электронодефицитным соединениям. [c.283]

    Хемосорбция углеводородов на металлах зависит от электронного строения металла [88] . в зависимости от числа незаполненных -орбиталей изменяется энергия связи адсорбированных молекул (теплота адсорбции). Однако природа поверхностных соединений металл — углеводород не установлена, и имеются разные мнения об их структуре (радикалы, комплексы). Дальнейшее изучение хемосорбции углеводородов, особенно в области температур, близких к началу целевой реакции окисления (область предкатализа), позволило установить наличие и состав образующихся поверхностных соединений, которые при повышении температуры становятся промежуточными активными формами каталитического процесса. Для механизма катализа особенно важны данные по адсорбции не индивидуальных углеводородов, а их смесей с кислородом. [c.47]

    Электронную структуру молекулы озона можно представить в виде резонансно-стабилизированного гибрида нескольких граничных структур, включающих биради-кальную и биполярную структуры (схема 13.15, а). Озон относят к электрофильным реагентам. Он взаимодействует с лигнином по двойным связям бензольного кольца и пропановой цепи по механизму 1,3-диполярного присоединения с образованием в качестве промежуточных продуктов озонидов (см. схему 13.15, б). Озониды далее расщепляются. В итоге озонолиз приводит к деструкции лигнина в результате расщепления ароматических и алифатических двойных связей с образованием в качестве конечных продуктов карбонилсодержащих соединений (альдегидов, кетонов, кислот и сложных эфиров). Поскольку отбелка озоном проводится в присутствии воды, при разложении озонидов неизбежно образуется пероксид водорода, и в продуктах озонолиза [c.494]

    Применение физико-химических методов внесло неоценимый вклад в установление тонких деталей строения сложных органических соединений н их реакционной способности, в познание элементарного механизма органических реакций. Как показано в одном из обзоров, мощный физико-химический метод — импульсный радиолиз — дает весьма ценную информацию о свойствах коротко-живущих частиц, возникающих в промежуточных стадиях органических реакций. Как показано в другом обзоре, методы фотоионизации молекул, фотоэлектронной спектроскопии, фотодиссоциапи ионов позволяют получать сведения об электронной структуре молекул и поведении образующихся ионов. И еще один аспект совместных усилий физико-химиков и органиков более глубокое понимание проблемы ионной ассоциации, в частности, состояния ме-таллорганических соединений в растворах. [c.6]

    Для тт+1 были получены следующие значения стадия (2.12) — 0,704 стадия (2.14) —0,539 стадия (2.15) —0,662. Первая стадия характеризуется наибольшим значением /Пт+i, т. е. она должна идти при наиболее отрицательном потенциале поэтому при том же потенциале должны осуществляться и все другие стадии. Если исходить из расчетов электронной плотности в анионах дифенила, то 1 моль дианиона при протонировании должен дать /з моль дигидропроизводного (IX) и 7з моль дигидропроизводного (VIII). Соединение (VIII) содержит двойные связи, не сопряженные с фенильным ядром, и поэтому не реакционноспособно. Соответственно, на стадии (2.14), хотя это и двухэлектронный процесс, приходится лишь 1 и 7з электрона на молекулу исходного вещества. Сходные рассуждения показывают, что и для стадии (2.15) требуется только /з электрона на молекулу деполяризатора. Таким образом, в расчете на исходный дифенил необходимо четыре электрона на молекулу. Результаты расчетов подобного типа, выполненные для целого ряда молекул, представлены в табл. 2.2. Для случаев, когда теория предсказывает более одной стадии восстановления, структура ненасыщенного фрагмента в промежуточном продукте указана в скобках (под названием соответствующего соединения, см. табл. 2.2). Например, продуктом восстановления фенантрена является 9,10-дигидрофенантрен, у которого система ненасыщенных связей такая же, как у дифенила, и который должен реагировать, согласно изложенному подходу, как дифенил. Поэтому в табл. 2.2 дифенил помещен под фенантреном. Величины fUm+i и п получены расчетом по методу молекулярных орбиталей (МО) в приближении Хюккеля. Расчетные значения потенциалов полуволны найдены подстановкой соответствующих значений m+i в уравнение (2,10). В некоторых случаях наблюдалась лишь одна волна, несмотря на то, что предсказывалось несколько. Полагают, что полярографические волны настолько близки по потенциалам, что их не удается разрешить в эксперименте. [c.43]

    Возможно, также, что атом брома вместо атаки молекулы олефина атакует я-комплекс, образовавшийся из олефина и НВг, — направление, также ведущее к стерео-специфическому присоединению. Подобный механизм менее удовлетворительно объясняет уменьшение стереоспецифичности с повышением температуры. Недавно Абель и Пьетт [109] исследовали спектры электронного парамагнитного резонанса промежуточных радикалов, получающихся в процессе инициированного ультрафиолетовым светом присоединения бромистого водорода к разЛичным ациклическим и алицикличе-ским олефинам при низких температурах. Можно было ожидать получения однозначных выводов относительно структуры промежуточных радикалов, что позволило йы объяснить стереохимию процесса присоединения. Использование DBr вместо НВг подтвердило, что присоединение атома брома — начальная стадия процесса, так как спектры в каждом случае были одинаковы. Однако установить с несомненностью структуру промежуточного соединения было невозможно, хотя эти исследователи утверждают, что образование мостиковой структуры 20 вполне согласуется с их наблюдениями. [c.367]

    Прежде чем перейти к более подробному изложению современного состояния метода индексов реакционной способности, укажем еще на две особенности этого подхода, полезные для дальнейшего изложения. Все существующие индексы реакционной способности можно разделить на две группы. К первой относятся индексы, основанные на величинах, полученных расчетом по методу МО отдельной молекулы реагента. Это приближение изолированной молекулы, а соответствующие индексы называют статическими индексами реакционной способности. К ним относятся определенные еще в рамках я-электронного приближения свободные валентности, плотности граничных электронов и т.д. Индексы второй группы в явной или неявной форме учитывают изменение электронной структуры молекулярной системы в процессе реакции и получаются путем расчета определенной структуры, соответствующей возможному промежуточному (а иногда и переходному) состоянию реакции. Это приближение локализации, к которому формально можно отнести и приближение активированного комплекса, а соответствующие индексы называют динамическими индексами реакционной способности. Области потенциальных кривых, описываемые различными группами индексов реакционной способности, изображены на рис. 4.1. Предсказания относительной реакционной способности, получаемые с помощью этих методов, будут веряы, если соблюдается так называемое правило непересечения , в соответствии с которым для подобных соединений отношение энергий в произволь- [c.208]

    Константы абсолютной скорости реакции обмена получают по кинетическим кривым первого порядка, которые описывают зависимость уровня введения изотопа О от времени. Скорости реак-. ций сильно зависят 1) от стереохимического окружения карбонильной группы, в частности из-за громоздкого промежуточного диола, и 2) от наличия электронодонорпых или электроноакцепторных групп в окрестности карбонильной группы, поскольку реакция происходит путем взаимодействия единственной электронной пары атома кислорода с электронодефицитным атомом углерода. Поэтому скорости реакции, как правило, уменьшаются при увеличении хгространственной затрудненности и (или) сопряжения и суш ест-венно не зависят от структурных изменений в других частях молекулы. Метод исследования структуры молекулы с помощью измерения кинетических характеристик имеет высокую точность, так как одновременно для нескольких соединений можно обеспечить одинаковые условия (т. е. один и тот же раствор). О чувствительности этого метода можно судить по тому, что измеренное значение скорости обмена для 3-кетогруппы было в Ij 600 раз больше измеренного значения скорости для группы Д - -он-3. Более того, чувствительность этого метода достаточна и для того, чтобы показать, что 17-кетогруппа в данной реакции обмена лишь в 2,7 раза более активна, чем группа А -он-3 [38]. [c.244]

    Так же, как при мезомерии, соединение, содержашее нецелочисленные я-связи, изображалось набором структур — резонансных структур—, а само соединение рассматривалось как гибрид этих структур. То, что ни одна из этих структур не отражает ii thhhofo строения соединения в отношении распределения электронов по связям, а его состояние является промежуточным, указывалось двухконечной стрелкой соединяющей резонансные структуры. Отдельным резонансным структура.-, приписывался определенный вес (вклад), отражающий долю, приходящуюся на данную структуру чем ближе истинное строение молекулы соединения к резонансной структуре, тем больше вес последней. Прп изображении строения соединения этим методом следует и.меть в виду, что все ковалентные связи в резонансных структурах являются неполярными. [c.48]

    Обратимся к гетерогенному катализу и посмотрим, какие представления развиты в этой области. Теперь уже никто не сомневается в том, что химическому превращению молекул предшествует адсорбция их на поверхности раздела двух фаз, нанример твердой (кристаллической) и газообразной. После завершения собственно химической реакции следует выделение продукта реакции в газовую фазу— десорбция. Эти два процесса могут быть очень точно измерены, и именно эти измерения позволяют проследить за кинетикой реакции. О процессах, протекающих на поверхности, судят по изменению концентрации компонентов реакции в газовой (или жидкой) фазе. Однако из самых общих соображений можно предположить, что молекулы, сталкиваясь с поверхностными атомами, образуют промежуточные соединения или неустойчивые комплексы. Структура комплексов может быть самой разнообразной, но одно ясно — электронную перестройку будут претерпевать те участки адсорбированных молекул, которые входят в непосредственный контакт с атомами поверхности, так как радиус действия химических сил по порядку величины сравним с размерами атомов. По предложению академика А. А. Баландина (1928) эти контактирующие части называют мультинлетами . На рис. 4 приведены некоторые из предполагаемых механизмов перестройки атомных структур, входящих в мульти-плеты. Атомы и химические связи мультиплета заключе- [c.44]

    Ароматические нитросоединения занимают особое место в полярографии органических соединений. С одной стороны, они относятся к числу наиболее изученных объектов после публикации Шикаты [67], которая была первой работой по органической поля- рографии вообще, ароматическим нитросоединениям посвящены сотни работ (обзор до 1961 г. см. [68]). Но, с другой стороны, механизм и кинетика полярографического восстановления нитробензола настолько сложны, что, несмотря на многочисленные исследования и применение разнообразных приемов электрохимического исследования, они все еще раскрыты не полностью. Отчасти это объясняется тем, что потенциалы восстановления ароматической нитрогруппы лежат в области потенциалов нулевого заряда электрода, вследствие чего существенное значение приобретают адсорбция молекул деполяри тора и других участников электродного процесса, а также протекание поверхностных реакций протонизации с участием адсорбированных частиц. В силу особенностей электронной структуры нитрогруппы, многоэлектронные волны восстановления ароматических нитросоединений в протогенных средах отражают сложную совокупность разнообразных процессов переноса протонов и электронов. Некоторую роль играет также протекание побочных химических реакций, в основном дис-мутации промежуточных продуктов восстановления. [c.237]

    До последнего времени каменноугольная смола была основным сырьем для синтетических красителей. Развитие анилинокрасочного производства привело к выделению и изучению все большего числа фракций каменноугольной смолы, что сильно продвинуло химию карбоциклического и гетероциклического рядов. Синтез красителя из каменноугольной смолы включает ряд промежуточных соединений и реакций, и это, в свою очередь, привело к многочисленным открытиям в органической химии и технологии. Химия красителей стимулировала квантово-механические исследования вопроса о зависимости между электронной структурой простой и сложной молекулы и поглощением овета. То доминирующее положение в производстве красителей, которое занимала Германия до первой мировой войны, было достигнуто благодаря поощрению исследовательской работы как в области химии красителей, так и всей органической химии. После 1916 г- Великобритания и США предприняли решительные меры для укрепления и развития своей анилинокрасочной промышленности. Английские и американские анилинокрасочные фирмы составили обширные программы исследований для своих лабораторий и для университетов. В эти исследования были включены не только потребности производства, но и фундаментальные проблемы цвета, строения волокна, сродства красителей к волокну, хемотерапии и других отраслей органической и биологической химии. [c.18]

    Следует заметить, что для образования связей и проявления степени окисления +3 необходимо участие спаренных электронов, занимающих -орбиталь в атомах этих элементов. Пара электронов 5 устойчива и принимает участие в образовании химических связей лишь у элементов, образующих прочные связи например, у алюминия валентность +3 является преобладающей. Устойчивость одновалентных состояний растет в подгруппе по мере снижения прочности связей, и у таллия известны многочисленные соединения, в которых он одновалентен. Напротив, бор в соединениях всегда трехвалентен образование ковалентных связей в общем случае может доставить энергию, необходимую для того, чтобы перевести электроны атома бора в реакционноспособное возбужденное состояние, отвечающее 5р -гибридизации. Ионизационный потенциал (первый) бора настолько высок (8,29 эВ), что образование одной связи с одновалентным катионом бора не может компенсировать затраты энергии на отрыв электрона. Направление осей гибридных облаков этого типа характеризуется углами 120°, причем все три оси лежат в одной плоскости. Поэтому молекула соединения бора типа ВС1з имеет плоскую структуру. Бор в гидридах формально ведет себя как четырехвалентный элемент. Боран ВНз в свободном состоянии неизвестен и обнаружен только как неустойчивый промежуточный продукт. Но диборан ВгНв исследован детально. Этот гидрид был использован для получения и ряда других боранов. Диборан получают в чистом виде из борогидрида натрия и три-фторида бора  [c.157]

    РЕЗОНАНСА ТЕОРИЯ, теория электронного строения хим. соединений, сочетающая представления классич. теорип. хим. строения А. М. Бутлерова с квантовохим. описанием хим. связи (в рамках валентных схем метода). Согласно Р. т., для молекул и ионов, строение к-рых может быть представлено в виде неск. структурных ф-л, отличающихся спскобом распределения электронных пар между ядрами, реальное электронное и геом. строение не соответствует ни одной из структур, а является промежуточным между ними. Вклад каждой структуры определяется ее природой и относит, устойчивостью. Идея такого способа описания электронного строения (резонанс структур) принадлежит Л. Полингу (1928). [c.503]

    Для решения этой проблемы химики предложили концепцию резонанса. В своем простейшем виде она гласит, что если для соединения мы можем нарисовать две или более приемлемые структуры, то реальное распределение электронов не соответствует ни одной из них, а представляет нечто промежуточное между ними. Реальную молекулу называют гибридом структур, которые могут быть нарисованы, но сами по себе в действительности не существуют. Такие гипотетические структуры иногда называют резонансными структурами. Идею о том, что реальная молекула не представ.1яется адекватно одной резонансной структурой, а является суперпозицией таких структур, выражают, связывая их друг с другом так называемой резонансной стрелкой Энергия реальной молекулы меньше, чем энергия любой из отдельных резонансны х структур. [c.62]

    РЕЗОНАНСА ТЕОРИЯ, теория электронного строения хим. соединений, в основе к-рой лежит представление о том, что электронное распределение, геометрия и все др. физ. и хим. св-ва молекул должны быть описаны не одной возможной структурной ф-лой, а сочетанием (резонансом) всех альтернативных структур. Идея такого способа описания электронного строения принадлежит Л. Полингу (1928). Р.т. является развитием классич. теории хим. строения для молекул, ионов, радикалов, строение к-рых можно представить в виде неск. разл. структ) рных фйл, отличающихся способом распределения электронных пар между атомными ядрами. Согласно Р.т., строение таких соед. является промежуточным между отдельными возможными классич. структурами, причем вклад каждой отдельной структуры можно учесть при помощи разл. модификацгпг квантовомех. метода валентных связей (см. Валентных связей метод). [c.227]

    N282 выше —80°С (например, в течение 72 ч при 3°С) полимеризуется и дает сине-черное твердое вещество (N8) (плотность 2,30 г-СМ" ), которое с течением времени окрашивается в золотистый цвет. Структура этого соединения построена из ассоциатов линейных молекул, которые выстраиваются в стопку с кажущимся радиусом 1,5 А (рис. 5.3, з). При обычной температуре сопротивление этого вещества составляет 570-10- Ом-см, что является промежуточным значением, характерным для так называемых полуметаллов В1 и Те (табл. 3.11), причем электропроводность имеет металлический характер-Критическая температура появления сверхпроводимости для этого вещества низка (Тк 0,25К). Такие соединения привлекли к себе внимание необычными физическими свойствами, и их назвали одномерными металлами, в которых электронами проводимости являются делокализованные п-электроны цепи N8. В двумерных металлах типа графита л-электроны двигаются свободно в плоскости слоев, но в перпендикулярном направлении сопротивление велико, а в одномерных металлах этого не происходит. [c.276]

    Данные, подтверждающие делокализацию в. молекулах I—III, получены из измерений длин связей, исследований микроволновых и ультрафиолетовых спектров и дипольных моментов. Длины связей имеют промежуточное значение между обычными простыми и двойными связями. Сравнение дипольных моментов гетероциклов и соответствующих эталонных соединений с известными диполь-ными векторами (стрелка направлена к отрицательному концу диполя) показывает, что неподеленная пара электронов делокали-зована по циклу и, таким образом, имеется значительный вклад полярных резонансных структур. [c.99]

    Между структурой, имеющей поделенную л-электронную пару, и атомом, обладающим свободной электронной орбитой, может, согласно Дьюару, иногда возникать частичная связь вследствие слияния соответствующих областей. Например, присоединение брома к олефинам можно объяснить образованием промежуточного комплекса, называемого тг-комплексом и возникающего в результате первичной атаки двойной связи ионом) ВгФ(а). л-Связь, схематически изображенная формулой (б), обусловливает образовани многочисленных комплексов между молекулами этиленовых (чаще ароматических) соединений и атомами, имеющими незаполненную электронную оболочку. Классическим примером комплекса, обра- [c.32]


Смотреть страницы где упоминается термин Электронные структуры молекул и промежуточных соединений: [c.36]    [c.265]    [c.473]    [c.473]    [c.192]    [c.457]    [c.254]    [c.1393]    [c.1393]    [c.55]    [c.352]    [c.213]    [c.618]    [c.104]    [c.618]   
Смотреть главы в:

Ионные реакции в алифатическом ряду  -> Электронные структуры молекул и промежуточных соединений




ПОИСК





Смотрите так же термины и статьи:

Молекула электронные структуры

Соединения промежуточные



© 2025 chem21.info Реклама на сайте