Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановители гомогенные

    Автор книги, ранее принимавший активное участие в разработке так называемой электронной теории катализа, теперь, как он сам пишет, пытается объединить химический и физический аспекты катализа . Экстраполируя от гомогенного к гетерогенному катализу , он интерпретирует механизм гетерогенного катализа с позиций теории комплексообразования, поскольку работы последних лет показали, что между гетерогенным и гомогенным катализом нельзя провести четкую границу, как это считалось ранее в обоих случаях найдены сходные элементарные механизмы и активные формы. Убедительным примером может служить сопоставление окислительно-восстановитель-ного катализа на переходных металлах и их твердых неорганических соединениях с катализом неорганическими комплексными соединениями переходных металлов в растворах. [c.5]


    Формально эти реакции описываются простой суммарной схемой гомогенного каталитического процесса восстановления бромноватой кислоты до бромноватистой органическим восстановителем О  [c.386]

    На самом же деле, как показывает опыт, v=k Отступление от закона действия масс объясняется большой сложностью процесса. Такие реакции нельзя изобразить как бимолекулярные. Они могут протекать только через несколько последовательных стадий. Суммарная же реакция не осуществима, так как в ней должно участвовать пять, десять и более различных частиц, что не отвечает основным требованиям кинетической теории материи. По этой теории наиболее вероятны только столкновения двух, реже трех частиц. Пример реакции гомогенного катализа — взаимодействие перекиси водорода с бромид-ионом в кислой среде, где перекись водорода действует и как окислитель, и как восстановитель  [c.116]

    Перемещение водорода в органических соединениях в гомогенной среде происходит при многих важных реакциях с участием изопропилата алюминия, например восстановление по Меервейну — Понндорфу и окисление по Оппенауэру. Этим реакциям недавно были посвящены обзорные статьи [2—4], поэтому в данном разделе кажется целесообразным рассмотреть только те процессы перемещения водорода в гомогенной среде, которые не связаны с веществом типа изопропилата алюминия. Основная проблема реакций рассматриваемого типа заключается в- применении достаточно мощных окислителей и восстановителей. Хиноны, представляющие собой группу очень сильных органических окислителей, находят все возрастающее применение как дегидрирующие агенты. Другие акцепторы применяются гораздо реже. Гидрирование органическими восстановителями можно использовать лишь в ограниченной мере, так как трудно получить достаточно активные и стойкие доноры. [c.329]

    Другой интересный пример гомогенного катализа — каталитическое разложение перекиси водорода в присутствии бромида. В этом случае перекись водорода действует и как окислитель и как восстановитель в двух различных реакциях, протекающих при определенных условиях с характеристическими скоростями  [c.504]

    Известно огромное количество гомогенно-каталитических реакций в растворах. Обычно их делят на процессы кислотно-основного и окислительно-восстановительного катализа. Первые характеризуются тем, что катализатор облегчает перемещение электронных пар без их разрыва в процессах окислительно-восстановитель-ного катализа катализатор способствует разрыву электронных пар. В первом случае мы имеем дело с гетеролитическими реакциями, во втором — с гемолитическими. Разумеется, резкой грани между этими группами процессов нет, и некоторые реакции в зависимости от условий могут проникать как по гетеролитическому, так и по гомолитическому механизму. [c.74]


    H. является их существование в широких областях гомогенности (табл. 3). Металлоподобные Н. получают гл. обр. непосредственным действием азота или аммиака на порошки металлов при т-ре 800—1200° С, восстановлением их окислов углем или иными восстановителями в среде [c.83]

    Особым случаем газовой коррозии меди является водородная хрупкость, возникающая вследствие нагревания меди в атмосфере водорода или других восстановителей. В результате взаимодействия водорода с растворенным в меди кислородом или с включениями u- O образуется водяной пар, который нарушает гомогенность материала и ведет к потере пластичности. [c.73]

    В рассмотренных выше борсодержащих системах стабильность раствора, содержащего ионы металла и восстановитель, объясняется неспособностью к взаимодействию этих компонентов в гомогенной среде при данных условиях. Инициирование реакции требует введения в раствор одного из металлов, известных в области органической химии как катализаторы реакций гидрирования и дегидрирования, например Рс1, N1, Ад и некоторых других. Однако, после закрытия исходной поверхности восстанавливаемым металлом реакция будет продолжаться только в том случае, если, в свою очередь, последний способен катализировать процесс. Именно такое течение реакции характерно для рассматриваемого процесса химического восстановления металлов, что свидетельствует об ее автокаталитической природе. [c.154]

    Реакции окисления — восстановления Np (2,3 дня), изучавшиеся Сибор-том и Валем [S27], являются примером реакций свободного от носителя индикатора, совершающихся в гомогенной среде. Нептуний не имеет стабильных изотопов, и в то время, когда проводилась эта работа, Np (2,20 10 лет) еще не был открыт, так что индикатор был действительно свободным от носителя. Сиборг и Валь исследовали окисление восстановленной формы [Np(III) и (или) Np(IV)] нептуния в 1 М серной кислоте, обрабатывая растворы различными окислительно-восстановительными буферами (смеси макроколичеств окислителя и восстановителя). Они определяли долю восстановительной компоненты нептуния путем добавления сначала иона лантана, а затем фтористоводородной кислоты к раствору индикатора, причем восстановительная компонента соосаждалась с фтористым лантаном, а окисленная компонента (NpO " ") оставалась в растворе. Они нашли, что ион персульфата, йодная кислота, ион перманганата, ион бромата, ион церия (IV) и ион бихромата способны окислять нептуний в 1 М серной кислоте, но ион трибромида такой способностью не обладает. С целью [c.139]

    Превосходным электродно-активным кристаллическим веществом является сульфид серебра, обладающий малой растворимостью, высокой устойчивостью к окислителям и восстановителям, низким электрическим сопротивлением. Мембрану можно изготовить из прессованного поликристаллического сульфида серебра и. из пластинки монокристалла. Низкое электрическое сопротивление позволяет использовать сульфид серебра в качестве инертной токопроводящей матрицы при изготовлении электрода, селективного к ионам меди (на основе гомогенной смеси Си8 и А 28), свинца (на основе смеси А 28 и РЬ8) и других электродов. [c.344]

    Из сказанного выше можно сделать предположение о существовании нескольких различных типов гомогенного катализа. Хотя наше знание в настоящее время еще очень незначительно, мы все же можем вывести несколько общих положений, имеющих практическое значение. В отношении гомогенного катализа окислительно-восстановительных процессов справедливо, например, следующее положение катализатор — вещество, которое также может существовать в окисленной и восстановленной формах. Окисленная форма катализатора должна быть способной быстро реагировать с восстановителем основной реакции, а восстановленная форма катализатора — с окислителем этой реакции. Рассмотрим простой пример катализа каталитическое действие системы Лг — на окисление тиосульфата перекисью водорода в слабокислой среде. [c.193]

    Гомогенные восстановители. Хлорид олова(П) быстро восстанавливает Ре до Ре в горячем солянокислом растворе. Дьюк и Пинкертон [58] показали, что скорость этой реакции пропорциональна концентрации Ре и 5п и очень быстро повышается с увеличением концентрации хлорид-ионов. При анализе этих кинетических данных Дьюк и Петерсон [59] вывели уравнение [c.342]

    Это условие можно сформулировать следующим образом последовательное титрование смеси окислителей возможно, если восстановительная форма более слабого окислителя количественно реагирует с более сильным окислителем, а при последовательном титровании смеси восстановителей необходимо, чтобы окисленная форма более слабого восстановителя количественно окисляла более сильный восстановитель. Таким образом, последовательность титрования компонентов смеси (окислителей или восстановителей) обусловлена возможностью титрования более сильного окислителя (восстановителя) восстановленной (окисленной) формой более слабого окислителя (восстановителя). Справедливость этого положения вытекает из следующих практических соображений например, если при внесении титранта в смесь окислителей произойдет частичное восстановление также более слабого окислителя (а это неизбежно при столкновении ионов в гомогенной с еде, особенно вблизи к.т.т.), то необходимо, чтобы продукт его реакции - восстановитель - быстро и стехиометрнчески прореагировал с еще недотитрованным сильным окислителем. Следовательно, в первой к.т.т. завершается фактически химическая реакция, выражаемая уравнением [c.88]


    Переход электронов в окислительно-восстановительной реакции может происходить как в объеме раствора между находящимися в нем частицами, так и на границе раздела твердая фаза — раствор. Примерами гомогенных реакций могут служить взаимодействия между ЗпСЬ и РеСЬ или между РеЗОч и К2СГ2О7 в водном растворе. Подобные реакции часто используются в химическом анализе для определения окислителей или восстановителей. При потенциометрическом титровании (разд. 39.6) точка эквивалентности совпадает со скачкообразным изменением потенциала. [c.416]

    Небезынтересным является вопрос о влиянии растворителя на восстановительную силу комплексных гидридов металлов. Для алюмогидрида лития такую зависимость проследить не удается, так как его высокая реакционная способность ограничивает выбор растворителей, сводя его лишь к простым эфирам, в которых он является мощным реагентом различия в восстановительной силе при этом незначительны. Напротив, использование борогидрида натрия, являющегося мягким восстановителем, позволяет заключить, что роль растворителя может быть чрезвычайно большой. Так, восстановление ацетона заканчивается за несколько минут в водном или спиртовом растворе и вовсе не наблюдается при проведении реакции в растворителях эфирного типа - ТГФ, диглиме и триг-лиме, хотя КаВН4 хорошо растворим в них. Следовательно, растворитель важен не только для достижения гомогенности среды. Роль его более сложна и может быть осмыслена лишь с учетом механизма реакции. [c.120]

    Механизм действия хлорнда олова (И)—наиболее часто применяюшегосв в качестее восстановителя — инои, так как реакция восстановлеиия этой солью протекает в гомогенных системах. [c.116]

    Из прямых методов, по-видимому, наиболее широкое применение получил метод Клемменсена [1]. Хотя он был использован для синтеза углеводородов исходя из большого числа альдегидов и кетонов, однако иаилучшие результаты были получены при применении этого метода к кетонам, особенно алифатически-алицикли-ческого и алифатически-ароматического типов. Методика заключается в кипячении с обратным холодильником карбонильного соединения с большим избытком амальгамированного цинка и соляной кислоты без добавления или с добавлением такого смешивающегося с реакционной средой растворителя, как этанол, уксусная кислота или диоксан, или с таким несмешивающимся растворителем, как толуол. Выходы бывают различными во многих случаях они вполне удовлетворительны. В качестве побочных продуктов были обнаружены олефины, пинаконы и следы карбинолов. Гомогенная среда благоприятствует образованию пинаконов. Добавление уксусной кислоты к ацетофенону и восстановителю, применяемому в реакции Клемменсена, снижает выход этилбензола с 80 до 27% и приводит к повышению выхода пинакона. Уменьшение концентрации минеральной кислоты благоприятствует образованию олефинов иапример, понижение концентрации с 20 до 3% увеличивает выход стирола с 2 до 26% [2]. [c.10]

    БЕЛОУСОВА-ЖАБОТИНСКОГО РЕАКЦИЯ, протекающее в автоколебат. режиме каталитич. окисление разл восстановителей бромноватой к-той НВгОз. Прн этом наблюдаются колебания концентраций окисленной и восстановленной форм катализатора и иек-рых промежут. продуктов. Р-ция идет в кислом водном р-ре в кач-ве катализаторов используют ионы металлов переменной валентности, напр. Се или Мп, в кач-ве восстановителей-малоновую к-ту, ацетилацетон и др. Б.-Ж. р.-наиб, изученная гомогенная колебательная реакция, открытие к-рой стимулировало резкий рост исследований хнм. колебаний и привело к созданию новой области хим. кинетики. [c.254]

    При гомогенном Г. активация водорода и субстрата происходит путем их включения в координац. сферу каталитич. комплекса. При этом идет гетеролитич. или гомолитич. диссоциация водорода, что и создает условия для Г. Связь субстрата с атомом металла катализатора должна быть достаточно лабильной. Алкены, образующие слишком прочные связи, не гидрируются в этих условиях. В кач-ве катализаторов используют соед. переходных металлов соли, карбонилы, фосфиновые комплексы, двухкомпонентные системы, получаемые взаимод. солей с восстановителями или комплексообразователями (напр., катализаторы Циглера-Натты). Вследствие большей активности катализаторов и соотв. более мягких условий гомог. Г. обычно более избирательно, чем гетерогенное. Важная область применения таких процессов-синтез оптически активных в-в, напр. Г. а-фенилакриловой к-ты, катализируемое комплексами КЬС1з с фосфинами и проводимое в смеси бензол-этанол. [c.554]

    Для контроля за степенью очистки белков чаще применяют метод электрофореза. Большинство авторов в качестве носителя используют гомогенные гели или градиент концентрации акриламида. Основной способ при этом — электрофорез в диссоциирующей среде ДДС-Na соответственно процедуре, которую описал Лэммли [68]. В определенных случаях завершающим приемом при этом являются иммунодиффузия [29, 114] либо иммуноэлектрофорез [17, 80, 118]. При исследовании структуры некоторые авторы прибегают к двумерному электрофорезу. Тогда первая миграция молекул может происходить в гомогенном геле полиакриламида с ДДС-Na или без него во втором направлении молекулы мигрируют в полиакриламидном геле с ДДС-Na в присутствии восстановителей дисульфидных связей (р-меркапто-этанол) [10, 40, 61, 78]. Чтобы охарактеризовать субъединицы легуминов гороха и конских бобов, Матта и др. [77, 78] применяют сочетание ДДС-Na с р-меркаптоэнталом и электрофокусированием. Рестани и др. [92 пользуются этим же способом применительно к глобулинам люпина, а Ху и Еэзен [53] демонстрировали гетерогенность белков сои. Указанные методы с [c.155]

    В процессе восстановления нитросоединений легко усматривается каталитическое влияние ионного характера. Здесь мы будем говорить только о реакциии восстановления в гомогенной среде без участия металлических восстановителей, как железо и т, п., хотя и в фактах гетерогенного восстановления, которые будут рассмотрены ниже, каталитическое влияние со стороны ионов имеет место. [c.471]

    Если скорость переноса много больше, чем скорость химического превращения, то именно последнее является скоростьопре-деляющей стадией процесса. Это так называемый кинетический режим реакции, и кинетика ее в целом не отличается от кинетики гомогенного процесса. Такие реакции могут быть очень медленными, если они сопряжены с разрывом или образованием прочных ковалентных связей, разрушением или образованием кристаллических решеток твердых веществ. Поэтому, скажем, молекулярный кислород является очень медленным окислителем, а водород - медленным восстановителем. [c.154]

    Использование вихревых аппаратов в процессе извлечения серебра из серебросодержащих сточных вод на стадии обработки суспензии перед сепарированием на Шосткинском химическом комбинате Свема увеличило извлечение серебра с непосредственным сепарированием на 20%. В процессе восстановления нитросоединений до аминов уменьшается расход восстановителей, увеличиваются скорость восстановления и выход готового продукта. Внедрюнне вихревых аппаратов на Калининском комбинате строительных материалов в процессе приготовления водной суспензии алюминиевой пудры, применяемой в производстве газоснликата в качестве порообра-зователя, позволило повысить активность газообразователя, выход газа и гомогенность. [c.27]

    Хомченко Г. П., Севастьянова К. И., Окислительно-восстановительные реакции, 1980. С, И, Дратгн. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЙ КАТАЛИЗ, облегчает перенос электронов от восстановителя к окислителю. В р-циях с участием 0> или кислородсодержащих соед. облегчается перенос кислорода от окислителя к восстановителю. Механизм О.-в. к. зависит от типа р-ции. В радикально-цепных р-циях катализатор способствует образованию атомов и радикалов в р-рах или газовой 4 зе (см. Гомогенный катализ) или на пов-сти тв. тел (см. Гетерогенный катализ). В гетеролитич. окисл.-восстановит. р-циях перенос электронов может облегчаться вследствие усиления донорных св-в восстановителя под действием оснований или акцепторных св-в окислителя под действием к-т. [c.398]

    Молекулярный водород не является в растворе сильным восстановителем в отсутствие катализатора. Молекула водорода может расщепляться либо гомолитнческн на два атома водорода, причем в водном растворе энергия, необходимая для этого процесса, вероятно, приблизительно равна той же величине, что и в газовой фазе (около 103 ккал), либо гетеролитически на сильно гидратированные гидрид-ион Н" и протон Н энергия, необходимая для этого расщепления, составляет приблизительно 33 ккал. Гомолитическое расщепление сильно катализируется поверхностями металлов, которые способны образовывать связь с атомами водорода, а когда эта связь не слишком прочна, такие поверхности являются активными катализаторами для реакции гидрогенизации или восстановления. Коллоидальные платина или палладий, а также тонкораздробленный никель в течение многих лет применялись как катализаторы гидрогенизации. Совсем недавно Кельвин [28] показал, что соли одновалентной меди действуют как гомогенные катализаторы восстановления иона двухвалентной меди или бензохннона в пиридиновом растворе. Аналогичная активность была обнаружена для ряда простых или комплексных ионов металлов в растворах из различных растворителей, а также и для некоторых анионов. Так, например, ионы серебра, двухвалентных меди и ртути, перманганат-и гидроксил-ионы и некоторые комплексы тех же ионов металлов являются в водных растворах катализаторами реакций восстановления ионов бихромата, перманганата, иодата, ионов четырехвалентного церия, двухвалентных меди и ртути, а также катализаторами некоторых реакций обмена и конверсии. В органических растворителях медные или серебряные соли органических кислот выступают в роли катализаторов для аналогичных реакций дико-бальтоктакарбонил Со2(СО)8 служит катализатором реакций гидроформилирования и гидрогенизации, что обсуждается в разд. 4 гл. VIII. В среде аммиака анион является катализатором [c.93]

    Двуокись серы применяется также для восстановления арсената до арсенита до Sb , Se и Те до элементарного состояния, Си до Си в присутствии тиоцианата и V до Гомогенные восстановители. Хлорид олова (II) быстро вое станавливает Fe до Fe в горячем солянокислом растворе Дьюк и Пинкертон показали, что скорость этой реакции про порциональна концентрациям Fe и Sn и очень быстро повы шается с увеличением концентрации хлорид-ионов. При анализе этих кинетических данных Дьюк и Петерсон вывели уравнение  [c.383]

    В работе [46] приводятся данные по кинетике гидролиза борогидрида в 1 н. растворе NaOH на поверхности никелевого катализатора, содержащего 5—6% В. Условия процесса (подбор pH), по мнению авторов [46], исключали гомогенное разложение восстановителя. Полученные данные не укладывались в целочисленный порядок и выражались уравнением d[BHr]/dt= K[B ii Y+ . где в случае Ni—В-покрытия, г=0,5, а в случае Ni—В-порошка п = 0,3. Расчет величины кажущейся энергии активации в интервале температур 20—60° С привел к значениям 8,9 и [c.155]

    Гомогенное гидрирование алкенов молекулярным водородом при участии комплексных металлоорганических катализаторов — соединений переходных металлов типа МХ (где М — N1, Со, Си, Ре п — 2,3 X — галоген) с металлоорганическими восстановителями (Алк.)з А1, (СНдСН20)зВ — приобретает практическое значение вследствие мягких условий процесса (30—50 Си 3—5 ат), легкости регенерации катализатора и высокой эффективности реакции вследствие того, что катализатор и гидрируемое соединение находятся в растворе. Процесс состоит из 1) активации молекулярного водорода, заключающейся в разрыве связи Н—Н в результате его взаимодействия с металлоорганическим соединением и образования гндридного комплекса 2) непосредственного гидрирования, при котором гидридный комплекс присоединяется к алкену и образует связь металл — углерод гндрогенолиз этой связи приводит к конечному продукту и гидриду переходного металла, снова включающемуся в реакцию. [c.60]

    Мономеры, имеющие неспаренный электрон, затем, по-видимому, димеризуются с образованием диамагнитных продуктов [М2(ННз)г]. С повыщением концентрации примерно до 0,5 М расстояние между ионами металла сокращается до 10А, так что их внешние орбитали могут перекрываться с образованием зоны проводимости. Следовательно, можно ожидать, что концентрированные растворы будут напоминать расплавленные металлы (разд. 4.8), и это подтверждено наблюдаемыми свойствами этих растворов (например, определением чисел переноса, спектрами ядерного магнитного резонанса и электронного парамагнитного резонанса). Такой раствор поэтому является удобным источником электронов и очень сильным гомогенным восстановителем, имеющим рассчитанный стандартный восстановительный потенциал— 1,95 в при 25° (ср. табл. 8.3 и 8.5). Например, он способен восстанавливать многие соединения до свободных элементов, до интерметаллических соединений (разд. 4.11) или до го-мополиатомных анионов, содержащих восстановленные элементы, например из РЫг получено соединение [Ма(КНз)9][РЬ(РЬ)8]. Эти растворы очень реакционноспособны. Кислород реагирует с ними, образуя высшие окислы, такие, как КО2, окись азота образует гипонитриты МгНгОг. С участием этих растворов можно осуществить многие важные реакции, например [c.329]

    Так как подобные фотохимические реакции в газовой фазе или в гомогенных растворах в мягких условиях среды невозможны, то Рабинович пытается решить эти вопросы для фотосинтеза, привлекая на похмощь представления о свободных радикалах, о дисмутации энергии и об образовании в результате этого окислителей и восстановителей с необычайно высокими потенциалами и т. д. Вместе с тем он сравнительно мало обращает внимания на то, что возможность осуществления подобных трудных в энергетическом отно-щении реакций обеспечивается в самом растении, вероятно, более [c.10]

    Несмотря на отсутствие каких-либо обобщающих зависимостей такого рода, Конант и Каттер[14] указали, что скорости, с которыми протекает необратимое окисление или восстановление многих органических соединений, имеют качественно параллельный ход с потенциалами взятых окислителей или восстановителей. Это утверждение они иллюстрировали своим исследованием гомогенного восстановления малеиновой кислоты и дибензоилэтилена. В том же году Голлута[15], исследуя окисление формиатов, показал, что между потенциалом окислителя и скоростью реакции имеется, повидимому, какая-то зависимость. В дальнейшем эта зависимость была вполне точно объяснена Конантом и Лутцем [16], а затем дальше Конантом и другими его сотрудниками [17]. [c.274]

    Существенную роль в гомогенном катализе окислительновосстановительных процессов играет способность катализатора образовывать координационные соединения со сложными органическими восстановителями. Так, например, многочисленные реакции между перекисью водорода и ортодиоксипроизводными ароматического ряда катализируются в щелочной среде соеди нениями кобальта. Этот каталитический эффект полностью [c.79]

    Нитриды металлов IV группы. Азот взаимодействует с титаном довольно легко. Последними исследованиями установлено, что в системе Ti — N образуется одно соединение состава TiN, которое характеризуется широкой областью гомогенности [49, 63]. Нитрид титана предельного состава TiN получают нагреванием порошка металла в токе азота или аммиака при температуре 1200—1300° С в течение 4 ч [71. Имеются сведения о получении нитрида титана восстановлением двуокиси титана углеродом в атмосфере азота при температуре 1900° С [3], однако продукты азотирования были загрязнены карбидом титана. Александер [481 предложил аналогичный способ получения нитрида титана, но в качестве восстановителя он использовал aHj. Ормонт получал нитрид титана разложением в аммиаке четыреххлористого титана [24]. Описаны методы получения нитрида титана из газовой фазы [102]. При температуре проволоки (на которой осаждается TiN) около 1450° С, общем давлении в реакционной камере 300—400 мм рт. ст., парциальном давлении Ti l 17 мм рт. ст. и отношении N, Hj = 1 1 получается нитрид титана, точно отвечающий формуле TiN [1021. В работе [c.29]

    В жидком аммиаке. Наиболее необычным свойством некоторых неводных растворителей является их способность растворять металлы. Растворы щелочных металлов в жидком аммиаке представляют собой сильные восстановители и находят широкое применение, хотя не только жидкий ЫНз обладает этим свойством. Гомогенные восстановительные реакции можно проводить в растворе, так как их действие легче контролировать, чем при употреблении щелочного металла. Ниже приведены интересные примеры реакций восстановления приготовление цианистых комплексов металлов с нулевой валентностью [реакция (8)], металлокарбонильных анионов и их производных [реакции (9) — [c.236]


Смотреть страницы где упоминается термин Восстановители гомогенные: [c.387]    [c.200]    [c.78]    [c.304]    [c.238]    [c.136]    [c.304]    [c.80]    [c.166]    [c.302]    [c.260]    [c.63]   
Химический анализ (1979) -- [ c.342 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановитель



© 2025 chem21.info Реклама на сайте