Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие жидкость — пар в тройной системе кислород — аргон — азот

    Равновесие жидкость—пар в бинарной системе кислород— аргон. Точная диаграмма равновесия тройной системы кислород—аргон—азот может быть построена только при наличии надежных данных по фазовым равновесиям трех бинарных систем кислород—азот, кислород—аргон и аргон—азот. Из этих трех систем наиболее подробно была изучена система кислород— азот, и данные по равновесию ее фаз имеются в ряде работ [36 38 57]. Поскольку летучесть кислорода значительно [c.14]


    Сравнение экспериментальных данных с расчетными. Полученные указанным способом расчетные данные по содержанию аргона в азотной флегме из НК сопоставлены на рис. 28 с опытными значениями для установок КГ-30 [47] и Г-120 [48]. Между расчетными и опытными данными наблюдается удовлетворительное соответствие— отклонение в большинстве случаев не превышает 10—15%, что близко к ошибке эксперимента при таких малых содержаниях аргона. Сравнение опытных и расчетных данных о распределении компонентов на тарелках НК приведено на рис. 29, из которого видно, что опытные точки достаточно хорошо описываются теоретическими линиями ректификации. Аналогичные данные получены для режимов с различным составом продуктов разделения [48], а также для колонн с кольцевыми тарелками диаметром 100, 500 и 800 мм. Хорошее соответствие между действительным и расчетным распределением компонентов было получено лишь при использовании точных данных по равновесию жидкость—пар в тройной системе кислород—аргон—азот. Даже сравни- [c.116]

    Равновесие между жидкостью и паром в бинарных и тройных системах из кислорода, аргона и азота [c.10]

    К термодинамическим свойствам, необходимым при расчете схемы, относятся энтальпия и энтропия воздуха и его компонентов при различных температурах и давлениях давление, температура и составы равновесных фаз жидкости и пара тройной системы кислород— аргон — азот, а также данные о равновесии жидкость — пар других систем. [c.27]

    Как уЖе было указано, для расчета процесса ректификации воздуха необходимо располагать данными по равновесию жидкость—пар в тройной системе кислород—аргон—азот. Исследование бинарных систем кислород—азот, кислород—аргон и аргон—азот является не только необходимой составной частью в изучении тройной системы, но имеет и самостоятельное практическое значение, так как данные о равновесии в бинарных системах используются при расчете процессов ректификации, испарения и конденсации [55]. [c.36]

    Равновесие жидкость — пар в тройной системе кислород — аргон — азот [c.95]

    Данные о равновесии жидкость — пар в тройной системе кислород — аргон — азот используются в проектных, поверочных и исследовательских расчетах схем и аппаратов ВРУ. [c.55]

    Значения Хз и Хг определяют искомый состав жидкости по азоту и аргону. Равновесный этой жидкости пар находится по диаграмме равновесия тройной системы кислород—аргон— азот (например, приведенной на рис. 4). Энтальпия этого пара рассчитывается по уравнению (38) или (39) и вместе с концентрацией определяет координаты второй точки — Б. Продолжив снова полюсной луч РБ до нулевой плоскости, находим след его — точку б, соответствующую состоянию жидкости тройной смеси на вышележащей тарелке. Повторяя расчет подобным образом от тарелки к тарелке, можно получить конечную концентрацию компонентов в смеси (точка Е). [c.46]


    Равновесие жидкость—пар в тройной системе кислород—аргон—азот [c.94]

    Реперные точки. Наилучшей реперной точкой для термометрии является тройная точка чистого вещества. Для точных измерений необходимо лишь обеспечить полное тепловое равновесие всех фаз. Самый надежный способ, гарантирующий установление теплового равновесия, состоит в том, что измерения производятся в адиабатическом калориметре, подобном тому, который будет описан ниже (см. фиг. 4.6). При наличии достаточно большого количества чистого вещества калориметр не нужен. Так, например, температуры, соответствующие тройным точкам водорода, азота и кислорода, легко могут быть получены простой откачкой паров над кипящей жидкостью. В качестве фиксированных температурных точек можно использовать и температуры фазовых переходов в твердом теле, однако обеспечить полную равновесность состояния такой системы гораздо труднее, чем в случае сосуществования трех фаз твердое тело — жидкость — пар. Как показали калориметрические измерения, фазовый переход в твердом теле происходит скорее в узком температурном интервале, нежели при строго определенной температуре. Следует соблюдать осторожность при использовании коммерческого азота в экспериментах по воспроизведению его тройной точки. Примесь кислорода в жидком азоте мала, но, поскольку в воздухе содержится почти 1 % аргона, азот может содержать такое количество аргона, которое уже заметным образом повлияет на температуру тройной точки. В отношении чистоты азота следует отдавать предпочтение газу, полученному при разложении кристаллических соединений, содержащих азот. [c.132]

    В 1948 г. Вайсхаупт [67] получил зависимости по равновесию фаз бинарной системы кислород—аргон путем экстраполяции фаз экспериментальных данных по равновесию фаз тройной системы кислород—аргон—азот при 1000 мм рт. ст. Однако неточность вычислений (из-за раздельной экстраполяции значений по составу пара и жидкости) ограничивает возможности использования этих данных. [c.16]

    На фиг. 6 нанесена диаграмма равновесия жидкость — пар в тройной системе кислород— аргон — азот для р = 1,36 ата. Диаграмма построена в координатах у, — г/а с линиями х, = onst, х = onst и Г = = onst. На этой диаграмме по известному составу жидкости могут быть найдены равновесный состав пара, а также температура ее кипения. [c.95]

    Подробные исследования равновесия жидкость — пар в бинарных системах кислород—азот, кислород—аргон, аргон—азот и в тройной системе кислород—аргон—азот проведены во ВНИИкимаше [38, 39, 42]. По полученным экспериментальным данным были определены коэффициенты Л и В уравнения (24) и коэффициенты k и Л,- уравнений (27) и (28)—(30). Зависимости для вычисления этих коэффициентов представлены как в графической, так и в аналитической форме, необходимой при расчетах на вычислительных машинах. По уравнениям (24), (25), (27) и (28)—(33) составлены таблицы и построены диаграммы, выражающие зависимости между давлением, температурой и составами равновесных фаз жидкости и пара. Некоторые из этих.данных приведены в настоящей книге. Более подробные таблицы для бинарных систем приведены в работе [39], а таблицы и диаграммы для тройной системы — в работе [42]. [c.90]

    Диаграмма равновесия тройной смеси, использованная в настоящем расчете, была построена на основе данных по равновесию жидкость—пар в трех бинарных системах. Были использованы данные [2] для системы кислород—азот, данные 3] для системы кислород—аргон и еще неопубликованные данные ВНИИКИ-МАШа для системы аргон—азот. [c.20]


Смотреть страницы где упоминается термин Равновесие жидкость — пар в тройной системе кислород — аргон — азот: [c.19]    [c.21]    [c.94]   
Смотреть главы в:

Разделение воздуха методом глубокого охлаждения Том 1 -> Равновесие жидкость — пар в тройной системе кислород — аргон — азот




ПОИСК





Смотрите так же термины и статьи:

Азот аргон

Азот кислород

Аргон

Аргон кислород

Аргон системы пар жидкость

Жидкость пар равновесие в тройных системах

Равновесие в системе жидкость жидкость

Равновесие жидкость пар

Равновесие жидкость пар в системах

Равновесие жидкость — пар в системе аргон—азот

Равновесие жидкость — пар в системе кислород — азот

Равновесие жидкость — пар в системе кислород — аргон

Равновесие между жидкостью и паром в бинарных и тройных системах из кислорода, аргона и азота

Равновесие системе

Системы газ жидкость

Системы жидкость жидкость

Тройное равновесие

Тройные системы

Тройные системы. Система СаО



© 2024 chem21.info Реклама на сайте