Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионные разрушения неметаллических материалов

    Степень агрессивного воздействия среды Скорость кор-розии незащищенного металла, мм/год Характер коррозионного разрушения незащищенного неметаллического материала после годичной эксплуатации (по внешним признакам) [c.11]

    Труднее осуществить контроль за коррозионным разрушением неметаллических материалов, также широко применяемых на химических и нефтеперерабатывающих заводах. Доля неметаллических материалов в общем объеме конструкционных материалов для аппаратов и трубопроводов постоянно увеличивается. Механизм разрушения полимерных материалов отличается от коррозии металлов и изучен недостаточно. Трудность заключается в том, что коррозионный износ таких материалов начинается не только с поверхности раздела фаз, как у металлов полимер набухает и быстро растворяется. Эти процессы за счет диффузии распространяются в глубь полимерного материала. [c.71]


    Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкристаллитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен- [c.23]

    Химическая коррозия протекает, как правило, в непроводящих электрический ток средах. Процесс окисления металла и восстановление окислителя среды протекает в одном акте. Характерным примером химической коррозии является коррозия в газах при высоких температурах. Электрохимический механизм коррозии наблюдается в проводящих электрический ток средах. Процессы окисления металла и восстановления окислительного компонента среды могут быть пространственно разделены. Скорость коррозии в этом случае зависит от электродного потенциала корродирующего металла. Для неметаллических материалов закономерности коррозионных разрушений и их химическое сопротивление воздействию окружающей среды также определяется природой и структурой материала, а также свойствами коррозионной среды. [c.13]


    Самым привычным видом разрушения неорганических соединений является эрозия — разрушение конструкций под действием дождей, ветра, изменений температуры. Однако кроме эрозии, т. е. разрушения, связанного с механическими воздействиями на материал, выделяют еще одну причину разрушения неметаллических конструкций, а именно разрушение под действием различных химических и физико-химических факторов. Чаще всего при разрушении неметаллических материалов наблюдается совместное воздействие эрозионной и коррозионной сред. Поэтому, говоря о коррозии строительных материалов, обычно имеют в виду одновременное протекание обоих процессов. [c.102]

    Характер коррозионного разрушения незащищенного неметаллического материала после годичной эксплуатации (по внешним признакам) [c.9]

    Общий коэффициент теплопередачи, как известно, находится в прямой зависимости от теплопроводности материала и в обратной зависимости от толщины стенки теплообменных элементов. Однако во многих случаях из-за высоких давлений тепло-обменные элементы вынуждены изготавливать толстостенными многослойными из материалов с низкой теплопроводностью , что в значительной мере усложняет конструкцию и иногда приводит к ошибочным решениям и авариям. Это особенно важно учитывать при разработке и эксплуатации теплообменных элементов, работающих в коррозионных средах. Большинство неметаллических материалов, применяемых для антикоррозионных покрытий поверхностей теплопередачи, обладают весьма низкой теплопроводностью. Сравнительно незначительные изменения толщины антикоррозионного слоя, нанесенного на металлическую поверхность, вызывают резкое снижение общего коэффициента теплопередачи и могут быть причиной опасных нарушений технологического режима. Вместе с тем, неудовлетворительная антикоррозионная защита теплообменной поверхности может приводить к преждевременному разрушению теплообменных элементов и опасным последствиям, связанным с образованием взрывоопасных сред. [c.182]

    В связи с многообразием неметаллических материалов и различным поведением их в коррозионных средах нет единых, унифицированных методов испытаний неметаллов на стойкость к коррозионному разрушению. Для этих целей используется целый ряд методов, применение которых зависит от природы материала. К настоящему времени не разработано четких рекомендаций по оценке химической стойкости, позволяющих предвидеть реальную долговеч- [c.93]

    В связи о многообразием неметаллических материалов и различным поведением их в коррозионных средах до настоящего времени не разработаны единые, унифицированные методы испытаний неметаллов на стойкость н кЬрр03И01Ш0Чу разрушению. Для этих цепей ис-г/ользуется целый рдц методов, применение которнх зависит от природы материала. При этом 01сутствуют четкие рекомендации по оценке химической стойкости, позволяющие прогнозировать долговечность материалов в условиях контакта с рабочими средаши  [c.35]

    Испытания на коррозионную усталость, как известно, характеризуются неизбежным разбросом результатов эксперимента. Разброс вызывается погрешностью машин, условиями проведения опыта, точностью и технологией изготовления образцов и др., а также неоднородностью структуры и химического состава испытываемого материала. (наличие неметаллических включений, микротрещин, химическая неоднородность, анизЬтррпность механических свойств и пр.). Если влияние первой группы факторов можно значительно уменьшить усовершенствованием оборудования и методики испытаний, то рассеяние экспериментальных данных, вызванное неоднородностью материала, связано со статистической природой коррозионно-усталостного разрушения и его нельзя полностью устранить. Его необходимо учитывать при испытаниях достаточно большого числа образцов, а результаты опыта желательно обрабатывать с помощью методов математической статистики. [c.32]

    Процессы воздействия агрессивных сред на неметаллические материалы изучены слабо, стандартные методы испытаний еще не разработаны. Значительно полнее изучена коррозия металлов предложен ряд методов испытания коррозионной стойкости металлов и покрытий, защищающих их от коррозии. Коррозия металлов — это разрушение их вследствие химического или электрохимического взаимодействия с агрессивной средой. В качестве примеров коррозии можно привести всем известное ржавление железа во влажном воздухе, т. е. окисление его с образованием окислов РсаОз и Рез04 или гидроокисей Ре(ОН)д и Ре(0Н)2. Известна также способность многих металлов подвергаться быстрой коррозии в агрессивных средах, особенно в кислотах, которые растворяют окислы металлов и металлы. По мнению некоторых исследователей, потери железа от коррозии составляют в среднем около 10% его ежегодной выплавки, поэтому борьба с коррозией — одна из важнейших народнохозяйственных задач для химической промышлеппости борьба с коррозией является решающим фактором в снижении себестоимости и улучшении качества продукции. В отдельных случаях создание коррозионно-стойкого материала и его рациональное применение решает вопрос о возможности производства данного продукта. [c.234]


    Во всех упомянутых случаях коррозионные повреждения трубопроводов большого диаметра в первую очередь, по—видимому, были обусловлены невысоким качеством материала, содержащего неметаллические включения и имевшего дефекты структуры, а также недостаточно эффективной подготовкой (сепарацией и очисткой) газа к транспорту, способствовавшей протеканию в трубопроводах сероводородной коррозии. Ингибиторная защита трубопроводов в данных случаях, вероятно, не осуществлялась, поскольку она не практикуется при транспорте осушенного газа и о ней в рассмотренных публикациях не имеется никаких упоминаний. Повреждения, подобные вышеописанным, сопровождавшиеся авариями, неоднократно отмечались на магистральном газопроводе диаметром 1020 мм Средняя Азия — Центр (САЦ), по которому, согласно регламенту, под давлением порядка 5,5...6,0 МПа транспортировался осушенный и очищенный от N28 газ. Однако и в этом случае предположительно недостаточная степень подготовки газа к транспорту неоднократно приводила к "проскоку" некондиционного газа в трубопровод и разрушению последнего. Данный газопровод тоже не защищался ингибитором коррозии. Проведенные на нем испытания ингибиторной защиты, согласно данным коррозионного контроля, обеспечивали некоторое снижение потерь исходной пластичности металла по сравнению с эксплуатацией его в неингибиро-ванной среде [33]. Не исключено поэтому, что применение эффективного ингибирования могло бы до некоторой степени обезопасить эксплуатацию данного газопровода. Однако достаточной уверенности в целесообразности и необходимости применения ингибиторной защиты при эксплуатации магистральных газопроводов нет, так как признано, что в данном случае она экономически невыгодна, а ингибиторы (даже самые высокоэффективные) никогда не гарантируют полной защиты от общей сероводородной коррозии и, следовательно, от обусловленных ею различных видов растрескивания металла (если последний подвержен растрескиванию). [c.39]


Смотреть страницы где упоминается термин Коррозионные разрушения неметаллических материалов: [c.572]    [c.109]   
Смотреть главы в:

Химическое оборудование в коррозийно-стойком исполнении -> Коррозионные разрушения неметаллических материалов




ПОИСК





Смотрите так же термины и статьи:

Материалы неметаллические

Разрушение коррозионное



© 2024 chem21.info Реклама на сайте