Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефекты структуры

    Дефекты структур кристаллов также влияют на электрическую проводимость полупроводников, обычно вызывая дырочную проводимость. В зависимости от преобладания того или иного вида проводимости различают полупроводники /г-типа и полупроводники р-типа. [c.118]

    Молекулярно-кинетическая теория плавления [170] исходит из положения, что уменьшение степени порядка в расположении частиц твердого тела начинается задолго до плавления в связи с увеличивающейся тепловой подвижностью частиц с ростом температуры. При этом растет число точечных дефектов структуры, что способствует разрыхлению кристаллической решетки. С дальнейшим повышением температуры в непосредственной близости от пл кристаллографически правильное расположение частиц теряет устойчивость, причем решающая роль в разрушении дальнего по- [c.158]


    СК Реальные кристаллы. Описанная в 50 внутренняя структура кристалла, характеризующаяся строгой пространственной периодичностью, представляет собой известную идеализацию. Исследование строения реальных кристаллов показало, что во всяком кристалле эта периодичность всегда несколько нарушена. В реальных кристаллах наблюдаются дефекты структуры. Число этих дефектов ч их тип оказывают влияние на некоторые свойства кристаллических веществ. В ряде случаев эго влияние очень сильно, а некоторые из таких структурно-чувств и тельных свойств имеют очень большое практическое значение. [c.162]

    На рис. 15.1 показаны различные виды изотерм (кривые 1—4). Одной из наиболее типичных является 5-образная (рис. 15.1, кривая 2) диэлектрическая изотерма, полученная для ряда органических и неорганических сорбентов. Эта изотерма состоит из трех участков А, В, С. Согласно слоистой модели, молекулы первого слоя (участок А) обладают сравнительно малой ориентационной способностью в электрическом поле вследствие их сорбции на наиболее активных центрах. Такими центрами являются функциональные группы, способные образовывать водородные связи, дефекты структуры кристалла, координационно ненасыщенные атомы [647]. Молекулы второго слоя более подвижны и дают больший вклад в ориентационную поляризацию сорбата, что выражается в более высоких значениях й /йа (участок В). Однако при достаточно больших величинах сорбции с развитием сетки водородных связей происходит цементация сорбата, его структура становится более жесткой. [c.243]

    Активационная теория самодиффузии в плотных кристаллических и аморфных средах исходит из положения, что в кристаллической решетке вследствие теплового движения происходит непрерывное перераспределение дефектов структуры (вакансий). Движение вакансий эквивалентно миграции частиц. Перенос массы возможен при одновременном соблюдении двух условий возникновении вакансии и достижении достаточно большой энергии колебаний частицы около положения равновесия. Если энергия колебаний велика или размеры частицы незначительны (водород, азот, углерод) возможна их миграция в междоузлиях решетки, что имеет место в металлических мембранах. В твердых растворах замешения движение частиц может происходить не только за счет вакансий, но и в результате обмена с соседними частицами. В матрицах аморфной структуры роль вакансий играют микрополости или дырки . [c.77]


    Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]

    Простейшие виды дефектов структуры кристалла представлены иа рис. 49 и 50. Первые из них, называемые дефектами Френкеля, заключаются в том, что некоторые ионы из узлов кристаллической решетки смещены в другие положения. Нормальные места их в данный момент Остаются свободными и затем замещаются другими ионами. Вторые, называемые дефектами Шотки, заключаются в существовании свободных мест в различных узлах решетки. [c.143]

    Твердые вещества в данных условиях тоже могут находиться в состояниях, обладающих различной термодинамической устойчивостью, например, в различных кристаллических формах. В свою очередь для любой из этих форм более устойчивым является состояние, соответствующее идеально правильному кристаллу. Дефекты структуры, вызванные условиями образования кристалла или последующей деформацией под действием внешних механических сил, в какой-то степени уменьшают его устойчивость, так как образование этих деформаций связано с затратой энергии и сопровождается возрастанием энтропии. Точно так же кристаллическое тело в измельченном состоянии, т. е. обладающее большей поверхностью, менее устойчиво. Во всех подобных случаях уменьшение устойчивости сопровождается возрастанием изобарного потенциала. В таких состояниях вещество обладает большей химической активностью и меньшей химической стойкостью, большей способностью к фазовым переходам (большим давлением насыщенного пара, большей растворимостью и т. д..) Выделение вещества в более активных формах и состояниях может происходить самопроизвольно только из состояний с еще большим изобарным потенциалом (еще более активных в данных условиях). Обычно такими состояниями служат сильно пересыщенный раствор или переохлажденная жидкость. Кроме того, такое вещество может получаться при химической реакции, происходящей в условиях, достаточно далеких от равновесных. [c.227]

    Кристаллы с пониженной термодинамической устойчивостью (т. е. с дефектами структуры, с сильно развитой поверхностью или находящиеся в напряженном состоянии под действием внешних сил и проч.) всегда обладают соответственно повышенной растворимостью, т. е. для них кривая ликвидуса рис. 116 должна несколько сместиться к центральной области диаграммы. [c.340]

    Различие степени пересыщения может влиять на направление процесса и на вид получаемых конечных продуктов. Так как наиболее устойчивая кристаллическая форма всегда обладает наименьшей растворимостью, то при повышении концентрации раствора прежде всего достигается состояние насыщения (затем пересыщения) именно в отношении этой формы. При дальнейшем повышении концентрации раствор вместе с тем может достигнуть насыщения (и пересыщения) и по отношению к более активным формам. В этих условиях легче могут образовываться кристаллы с различными дефектами структуры или становится возможным образование одной из метастабильных форм или начинается возникновение зародышей новой фазы (или новых фаз). В последнем случае, при возможности выделения вещества в двух кристаллических формах, преобладание той или другой из них в конечном продукте определяется соотношением скоростей процессов, а не термодинамической устойчивости этих форм. [c.361]

    Во-вторых, оно привело к возможности изучения количественной связи между различными дефектами структуры и тонкими различиями термодинамических свойств веществ. Так, образование вакансий в кристаллической решетке, естественно, сопровождается поглощением энергии. Повышение концентрации вакансий, наблюдаемое в некоторых металлах при повышении температуры, вносит свой вклад в теплоемкость, энтальцию и энтропию вещества. Такие равновесные концентрации ваинсий отвечают устойчивому состоянию металла при данной температуре. Их только условно можно относить к дефектам структуры. [c.29]


    Опытные данные, полученные С. Н. Журковым, показывают, что прочность волокон, тонких стеклянных и кварцевых нитей, рассчитанная на единицу площади поперечного сечения, сильно возрастает с уменьшением диаметра нити (рис. 213) и в пределе приближается к значениям, рассчитанным теоретическим путем. Это объясняют уменьшением вероятности случайных дефектов структуры у более тонких нитей. [c.588]

    Зависимость прочности полимера от дефектов структуры приводит к тому, что прочность меняется с изменением длительности действия силы. Чем продолжительнее действует на полимер разрушающая сила, тем при меньшей величине ее происходит разрушение тела. [c.588]

    С этих позиций объясняются некоторые дефекты структуры, например, винтовые дислокации роста, другие,же дефекты представля- [c.16]

    Вращательный эффект также способствует разрыхлению пакетов, что приводит в увеличению энтропийного фактора. При этом в кристаллической решетке появляются дополнительные дефекты структуры, приводящие к дальнейшему возрастанию энтропии смешения. Чем больше различие в длине смешиваемых молекул нормальных парафинов, тем выше протяженность пустот в периферийных участках кристаллических пакетов, что вызывает более резкий переход частиц в аморфное состояние с созданием новых структурных образований и соответственно приводит к некоторому понижению температуры плавления смеси. [c.145]

    ДЕФЕКТЫ СТРУКТУРЫ В КРИСТАЛЛИЧЕСКИХ ПРИРОДНЫХ ГРАФИТАХ [c.239]

    Экспериментально установлено, что процесс внедрения веществ между слоями углеродной матрицы идет от ее периферии к центру и сопровождается перемещением вещества по кристаллическим плоскостям. Процессы внедрения имеют предпочтительные для матрицы кристаллографические направления. Исключительно важную роль при внедрении играют дефекты структуры. Так, скорость образования МСС с бромом и азотной кислотой с ростом текстуры углеродной матрицы повышается приблизительно в 20 и 1000 раз соответственно [6-7]. [c.251]

    Приведенные выражения могут не соответствовать строгой стехиометрии МСС, так как их состав сильно зависит от внешней среды и дефектов структуры углеродной матрицы. Расстояние между внедренными слоями обозначается а между углеродными слоями — < 0. Для графита о равно примерно 0,335 нм. [c.255]

    Электронный парамагнитный резонанс (ЭПР) монофторида углерода позволяет получить спектр ЭПР со сверхтонкой структурой [6-168]. Поскольку в идеальном (СГ) все связи С—Г находятся в состоянии зр гибридизации и полностью насыщены, появление спектра ЭПР у этого соединения может быть связано с дефектами структуры, например с вакансиями атомов фтора в связях С—Г, либо с промежуточными соединениями, которые имеют неспаренные электроны. [c.391]

    Термообработка выше 1500 С, которая устраняет дефекты структуры, приводит к снижению прочности при растяжении. Очевидно, это связано с прогрессирующим формированием текстуры УВ с повышением температуры обработки и соответствующим уменьшением относительной деформации до разрушения. Другой причиной может быть локальное повышение степени упорядоченности и увеличение размеров прямолинейных участков лент микрофибрилл, которые снижают прочность при сдвиге УВ. [c.598]

    Дефекты структуры электролитических осадков [c.107]

    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    Дефекты структуры реальных кристаллов разнообразны. Прежде всего, различают точечные, линейные и поверхностные дефекты. Простейшие и в то же время важнейшие точечные дефекты это незанятые узлы решетки или вакансии и атомы, находящиеся в междуузлиях. Существование таких дефектов связано с тем, что отдельные атомы или ионы решетки имеют энергию, превышающую ее среднее значение при данной температуре. Такие атомы колеб- [c.162]

    Линейные дефекты структуры называются дислокациями. Простейший вид днслокации — краевая дислокация. Она представляет собой край одной из атомных плоскостей, обрывающейся внутри кристалла. Дислокации возникают как в процессе роста кристаллов, так и при местных механических, тепловых и других воздействиях на кристаллы (см., например, рис. 142, а, б на стр. 538). На рис. 02 изображена краевая дислокация (линия АВ), возникшая в результате сдвига части кристалла по плоскости АВСО в направлении, указанном стрелкой. [c.163]

    К[ исталлы кремния высокой чистоты, имеющие минимально число дефектов структуры, характеризуются очень низкой элек тропроводностью. Примеси и нарушения правильности строени резко увеличивают его проводимость. [c.508]

    Но И в этом случае тоже остается не ясным, почему этот процесс приобретает большее значение для циклических структур. Э а де-гидрогенизационная способность кислотных окисных катализаторов отмечалась различными авторами, в особенности для AI2O3 [276] не полностью исключена возможность существования на поверхности AI2O3 активных центров типа 1 , возникающих из-за наличия примесей или дефектов структуры. [c.131]

    За последнее время уделяется большое внимание влиянию субструктуры на коррозию металлов. Дефекты структуры, выходящие на поверхность металла, обладают повышенной реакционной способностью и по ним идет в первую очередь растворение металла. В зависимости от плотности активных мест, обусловленных различны вернТх " выходом дислокаций на поверхность, [c.327]

    Молекулярно-кинетическая теория плавления исходит из положения. что уменьшение степени порядка в расположении частиц твердого тела начинается задолго до плавления в связи с увеличива-юп1,ейся тепловой подвижностью частиц с повышением температуры. При этом растет число точечных дефектов структуры, что способствует разрыхлению кристаллической решетки. С дальнейшим повышением температуры в непосредственной б.тизости от кристалло-графпческп правильное расположение частиц теряет устойчивость, причем решающая роль в разрушенип да.льного порядка переходит к появляющимся более или менее значительным флуктуациям плотности, в которых участвует значительное число атомов. [c.8]

    Реальные макроскопические твердые тела обладают многочисленными статистически распределенными дефектами структуры (дислокации, микротрещины и т. д.). Волновые процессы в таких дефектных структурах имейт существенные особенности. [c.111]

    ГЧ УЛьпые кристаллы. Кристаллы, состоящие из соверщенно оди-нaк JBыx элементарных ячеек, называются идеальными. Образующиеся в реальных условиях кристаллы могут несколько отличаться от кристаллов идеальных. Реальные кристаллы построены из некоторого числа блоков правильного кристаллического строения, расположенных приблизительно параллельно друг другу, ио все же несколько дезориентированных. Это явление называется мозаичностью структуры кристаллов, которая ведет к возникновению дислокаций, т. е. линейных, а также поверхностных и объемных дефектов структуры, образующихся 1з процессе роста кристаллов или же при пластической деформации. Помимо дислокаций в реальных кристаллах образуются также участки неупорядоченности, локализованные обычно около отдельных узлов решетки, — так называемые плоские дефекты. [c.72]

    Объяснить ЭЮ можно, исходя из данных П. А. Ребиндера, показавшего, что все твердые тела обладают дефектами структуры — слабыми местами, распределенными таким образом, что участки твердого тела между ними имеют в среднем коллоидные размеры (порядка 10 см), т. е. один дефект встречается в среднем через 100 правильных межатомных (межмолекулярных) расстояний. Такие дефекты, очевидно, имеются и в сланцевых глинистых породах. С повышением гидростатического давления возрастает перепад давленш в системе скважина — пласт и, следовательно, глубина проникновения фильтрата промывочной жидкости. Проникающий по этим дефектным местам или микротрещинам фильтрат промывочной жидкости в зависимости от химического состава будет вызывать тот или иной эффект понижения твердости глинистых пород со всеми вытекающими последствиями для устойчивости стенок скважин. Проникновение фильтрата промывочных жидкостей в глинистые отложения за счет высокой гидрофильности глинистых минерале3, составляющих глинистые породы, имеет место и при отсутствии перепада давлений в системе скважина — пласт, но при наличии перепада давлений в системе скважина — сланцевые глинистые породы этот процесс интенсифицируется. Для полного увлажнения сланцевых глинистых пород, обладающих малой удельной поверхностью, требуется значительно меньше водной среды, чем для высококоллоидальных глин с их огромной удельной поверхностью. Поэтому требования к величине водоотдачи при разбуривании сланцевых глинистых пород должны быть значительно выше. Величины водоотдачи и перепада давлений хотя и играют значительную роль, но не являются определяющими в сохранении устойчивости стенок скважин, сложенных глинистыми породами. Устойчивость стенок скважин и основном определяется физико-химическими процессами, протекающими в глинистых породах при их контакте с фильтратами промывочных жидкостей на водной основе. Влияние этих процессов на изменение свойств малоувлажненных глинистых пород в значительной мере может быть оценено величинамп показателей набухания и предельного напряжения сдвига. [c.105]

    Строго геометрическое описание упорядочения цепных молекул в пучках с помощью поворотной модели использовалось Крёнером и Антони [14g, 99] для разработки количественной нелинейной теории деформирования, в основе которой лежит дефект структуры — дисклинация . Тогда меандровая модель сводится к определенному упорядочению дисклинацпй. [c.53]

    Исследованы при комнатной температуре и температуре жидкого азота эффект Холла и электросопротивление пироуглерода с температурой осаждения 2100°С, содержащего различное количество бора. Полученные данные обработаны с использованием электронно-энергетической модели Херинга—Уоллеса в предположении применимости кинетического уравнения Больцмана. Сделан вывод о существовании двух основных механизмов рассеяния носителей заряда в исследованных материалах — на ионизированных атомах бора и на собственных дефектах структуры. Оценены соответствующие им длины свободного пробега. Предложена формула, описывающая зависимость электросопротивления пироуглерода от содержания в нем растворенного в решетке бора. Ил. 1. Табл. 2. Список лит. 3 назв. [c.267]

    Дефекты структуры (трещиноватость, пористость, границы слоев) также имеют предпочтительную ориентацию. Вследствие этого и механические свойства определяются ориентацией направления относительно осей текстуры. Возможны и послойные колебания структуры и свойств, совпадающие с микрослоистостью антрацитов. [c.163]

    Теплоемкость выше, чем у сходного графита, что, возможно, связано с присутствием ОМСС и дефектами структуры ТРГ. [c.362]


Смотреть страницы где упоминается термин Дефекты структуры: [c.341]    [c.537]    [c.538]    [c.86]    [c.166]    [c.29]    [c.113]    [c.51]    [c.195]    [c.322]   
Прочность и разрушение высокоэластических материалов (1964) -- [ c.19 ]

Структура и прочность полимеров Издание третье (1978) -- [ c.52 , c.163 ]

Нестехиометрические соединения (1971) -- [ c.86 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Химия и технология пигментов Издание 4 (1974) -- [ c.31 , c.32 ]

Структура и свойства полимерных покрытий (1982) -- [ c.10 , c.183 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]

Основы общей химии Том 2 (1967) -- [ c.290 ]

Техника низких температур (1962) -- [ c.361 , c.373 , c.381 ]




ПОИСК







© 2025 chem21.info Реклама на сайте