Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Надмолекулярные структуры изменение толщины слоя

Рис. 3.1. Изменение характеристик обратимой нефтяной дисперсной системы в зависимости от растворяющей способности среды. 1-радиус ядра надмолекулярной структуры 2-толщина сольватного слоя 3-устойчивость 4-структурно-механическая прочность. Рис. 3.1. Изменение характеристик обратимой <a href="/info/56148">нефтяной дисперсной системы</a> в зависимости от растворяющей способности среды. 1-<a href="/info/1515283">радиус ядра</a> <a href="/info/15779">надмолекулярной структуры</a> 2-<a href="/info/56192">толщина сольватного слоя</a> 3-устойчивость 4-структурно-механическая прочность.

    Изменение РС среды (переход от нерастворителя к хорошему растворителю) сопровождается сложными явлениями в нефтяных системах. Кривые изменения толщины слоя надмолекулярной структуры (см. рис. 13, а, кривая I) н сольватного слоя (кривая 2) носят антибатный характер. Между толщиной слоя надмолекулярной структуры и структурно-механической прочностью (кривая 4) и между толщиной сольватного слоя и устойчивостью (кривая 3) сложной структурной единицы наблюдается четкая закономерность. Все эти кривые взаимосвязаны друг с другом. [c.63]

    На кинетику изменения толщин слоев надмолекулярных структур (в случае ассоциатов), сольватного слоя, устойчивость и структурно-механическую прочность сложной структурной единицы под действием РС среды весьма существенное влияние оказывает состав среды. Обычно в реальных дисперсионных средах применяют смесь различных растворителей, обладающих неодинаковыми (чаще всего аномальными) свойствами, приводящими к неодинаковым сопротивлениям системы при реализации взаимодействия твердой фазы со средой. Это обстоятельство должно быть учтено на практике. [c.64]

    Не рассматривая вывод кинетических уравнений формирования слоев надмолекулярных структур, аналогичных уравнениям, выведенным выще для изучения кинетики формирования сольватных слоев, мы остановимся на выводах, вытекающих из этих уравнений. На рис. 13 на основании кинетических уравнений формирования (разрушения) слоев показана зависимость изменения толщины слоев от растворяющей силы дисперсионной среды (нерастворитель, плохой растворитель, хороший растворитель). РС среды, обусловливает структурно-механическую прочность н устойчивость НДС, оказывающих существенное влияние на многие процессы переработки нефти (в том числе и на процессы производст- [c.62]

    Под действием внешних факторов в результате диссоциации старых и образования новых межмолекулярных связей происходят взаимосогласованные изменения размеров составных ча стей сложной структурной единицы сольватного слоя и надмолекулярной структуры. Протекающие на молекулярном и надмолекулярном уровне изменения определяют новое энергетическое состояние и обуславливают соответствующие изменения макроскопических физико-химических свойств нефтяных дисперсных систем таких, как агрегативная устойчивость, структурномеханические характеристики. Для решения ряда практических задач технологии переработки нефтяных дисперсных систем необходимо действием различных факторов целенаправленно влиять на соотношение размеров составных частей сложной структурной единицы, Принимая за скорость формирования (разрушения) слоев отношение бесконечно малого приращения толщины слоя к соответствующему приращению растворяющей силы среды и используя модель последовательных реакций, в работе [112] получили систему кинетических уравнений. С их помощью построены кривые изменения радиуса надмолекулярной структуры Я и толщины сольватного слоя Я, которым соответствуют кривые изменения агрегативной устойчивости и структурно-механической прочности нефтяных дисперсных систем (рис. 6). [c.40]


    Изменение растворяющей способности дисперсионной среды и активности надмолекулярной структуры вследствие перехода от нерастворителя к плохому растворителю и далее к хорошему растворителю сопровождается в обратимой нефтяной дисперсной системе двумя противоположными процессами. С одной стороны, по мере перехода от нерастворителя к плохому растворителю происходит повышение степени дисперсности ассоциатов, приводящее к увеличению поверхностной активности и росту толщины сольватного слоя сложной структурной единицы с другой стороны, взаимодействие дисперсионной среды с поверхностью сольватного слоя уменьшает толщину последнего. Разность скоростей формирования и разрушения сольватных слоев определяет их толщину при воздействии данного вида растворителя и обусловлена энергией взаимодействия сольватного слоя с поверхностью надмолекулярной структуры. [c.48]

    Следует особо отметить зависимость изменения толщины сольватного слоя и устойчивости нефтяной дисперсной системы от растворяющей способности дисперсионной среды. Повышение растворяющей способности среды вызывает непрерывное увеличение сольватного слоя сложной структурной единицы до максимума и одновременное уменьшение размеров надмолекулярной структуры. При этом нефтяная дисперсная система имеет максимальную устойчивость против расслоения, то есть максимальную коллоидную стабильность. При дальнейшем увеличении растворяющей способности среды, при переходе от плохого растворителя к хорошему, дисперсионная среда оказывает интенсивное влияние на сольватный слой и толщина его уменьшается, за счет чего повышается движущаяся сила процесса расслоения системы на фазы. Дисперсионная среда начинает взаимодействовать непосредственно с надмолекулярной структурой. После полного растворения сольватной оболочки и надмолекулярных структур нефтяная дисперсная система переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения. В этом случае система термодинамически устойчива. [c.48]

    Образцы полимеров, имеющие значительную толщину (волокна, пленки, бруски и др.), можно изучать с помощью т. наз. метода реплик. В этом случае исследуется морфология поверхности в предположении, что строение блока в объеме такое же. На свеже-сформованную поверхность полимера (образовавшуюся либо в результате удаления растворителя, либо при охлаждении расплава) напыляют в вакууме (0,013— 0,0013 н1ж , или 10- —10 рт. ст.) чаще всего слой платины и угля толщиной ок. 10 нм (100 А), который передает все неровности поверхности, обусловленные наличием надмолекулярных структур. Напыленный слой (реплику) можно отделить от поверхности практически всех полимеров с помощью желатина, растворяемого в водном р-ре роданистого аммония. Промытую в воде реплику вылавливают на металлич. сеточку и помещают в микроскоп. Методом реплик исследуют кристаллизацию полимеров, закономерности изменения структуры полимеров при отжиге, деформировании, радиационных воздействиях, изучают влияние химич. превращений на возникновение и трансформацию надмолекулярных струк р и др. [c.475]

    Описанные эффекты в равной мере присущи как аморфным, так и кристаллическим полимерам. Однако в случае последних ограничения, накладываемые поверхностью, приводят к изменению условий кристаллизации и характера возникающих в присутствии поверхности надмолекулярных структур, а в случае, когда толщина поверхностного слоя особенно мала, возможно полное подавление процессов кристаллизации, как это было показано в работах Малинского [17, 18]. [c.180]

    Установлена корреляция между изменениями надмолекулярной организации и протеканием термоокисления. В начале процесса слой крупных сферолитов постепенно распространяется от поверхности в глубину образца (до 500 мкм) рост толщины слоя прекращается при появлении на поверхности образца новой структуры. Этот момент совпадает с окончанием индукционного периода окисления. В начале окисления скорость химического связывания кислорода невелика и слой крупных сферолитов (рис. 3) сравнительно глубок. Последующие изменения надмолекулярной структуры локализуются в узкой полосе у самой поверхности (25—125 мкм). Окисление развивается настолько быстро, и скорость связывания кислорода так велика, что кислород не успевает [c.41]

    Обнаруженные закономерности в изменении надмолекулярной структуры ненаполненных и наполненных покрытий в зависимости от природы подложки проявляются для покрытий, сформированных в различных условиях. Число двойных связей ненасыщенного полиэфира и стирола, вступающих во взаимодействие в процессе полимеризации, можно регулировать путем изменения температуры и продолжительности формирования покрытий. Из кинетических данных об изменении внутренних напряжений следует, что при толщине 300 мкм процесс формирования покрытий при 20 °С заканчивается через 20 сут, а при 80 °С — через 6 ч. Для покрытий, сформированных в этих условиях, были получены сравнительные данные о влиянии режима отверждения на их структуру. В покрытиях, отвержденных при 20 °С на подложках с малой адгезией, формируется структура глобулярного типа. При формировании покрытий в этих же условиях на стали наблюдается образование сетчатой структуры из анизодиаметричных структурных элементов. Использование меньшего числа центров структурообразования и более рыхлая упаковка структурных элементов в граничных слоях покрытий, отвержденных при 20 °С, обусловлены малой подвижностью структурных элементов в этих условиях формирования. С повышением температуры до 80 °С уменьшается вязкость полиэфиров и увеличивается доступность для структурных элементов большего числа активных центров структурообразования на поверхности подложки. [c.30]


    Все это свидетельствует о том, что в полимерных покрытиях значительной толщины поверхностные процессы на границе полимер — подложка являются одним из важных факторов, определяющих надмолекулярную структуру и свойства покрытий в целом. Из этих данных также следует, что адгезия полимерных покрытий определяется не только природой, числом и характером распределения молекулярных связей в пограничном слое, но и скоростью протекания релаксационных процессов при формировании покрытий, зависящей от строения полимера и структуры покрытий. Формирование адгезионных связей необходимо рассматривать как поверхностный процесс, действие которого не ограничивается пределами одного или нескольких мономолекулярных слоев, а вызывает изменение структуры всех слоев покрытий в целом. [c.37]

    В других работах [63] структура пограничного слоя представляется из клубков, взаимодействующих с поверхностью по отдельным звеньям. В зависимости от плотности упаковки макромолекул клубки могут быть эллипсоидальной или цилиндрической формы с большой осью, ориентированной перпендикулярно поверхности. При отсутствии специфического взаимодействия полимера с наполнителем силы, действующие в поверхностном слое, достаточно малы, чтобы вызвать изменение конформации макромолекул и разворачивание полимерных клубков. Если взаимодействие макромолекул с поверхностью адсорбента больше сил внутримолекулярного взаимодействия, допускается возможность разворачивания макромолекул в пограничном слое [62]. Предполагается также [64], что большая толщина граничных слоев обусловлена адсорбцией поверхностью наполнителя из умеренно концентрированных растворов вторичных надмолекулярных структур. [c.38]

    Аналогичный эффект послойной упорядоченности и различной плотности упаковки структурных элементов, обусловленный ориентацией их в пограничном слое, имеет место при формировании полимерных покрытий на различных подложках. Образование упорядоченных надмолекулярных структур в олигомерах на границе полимер — наполнитель и полимер — подложка увеличивает скорость полимеризации и тем больше, чем меньше толщина покрытий. Об этом свидетельствуют кинетические данные об изменении внутренних напряжений и теплофизических параметров при формировании покрытий различной толщины (рис. 1.24). Это связано с особенностями полимеризация в присутствии ориентированных упорядоченных структур. При взаимодействии пленкообразующего с твердой поверхностью в результате образования ориентированных упорядоченных структур условия полимеризации вблизи твердой поверхности должны отличаться от условий в объеме. С образованием ориентированных слоев из молекул мономеров связывается увеличение скорости полимеризации мономе- [c.42]

    Специфика формирования полимерных покрытий связана с возникновением неоднородной дефектной структуры по толщине пленки вследствие неодинаковых скорости и условий отверждения различных слоев [51]. Одним из способов резкого понижения внутренних напряжений в полимерных покрытиях является использование пленкообразующих с регулярным строением молекул. Причина этого явления в таких системах связана с особенностями структурообразования, обусловленными формированием в жидкой фазе однородной упорядоченной структуры из )азвернутых макромолекул п фиксированием ее в покрытиях 180]. Эта особенность структурообразования наглядно проявляется при формировании покрытий из олигоэфиракрилатов различного строения. На основании реологических, физико-механических, теплофизических и структурных данных было установлено, что при получении покрытий из олигомеров на первой стадии их формирования образуются локальные связи между небольшим числом молекул с одновременным формированием надмолекулярных структур, а на второй стадии между этими структурами возникают связи и образуется пространственная сетка. На последней стадии вследствие торможения релаксационных процессов наблюдается резкое нарастание внутренних напряжений. Из данных об изменении реологических свойств олигоэфирмалеинатов на различных этапах их отверждения следует, что исходные олигомеры представляют собой системы ньютоновского типа. Через определенный период времени наблюдается не только нарастание вязкости, но и изменение характера реологических кривых, связанное с переходом системы в структурированное состояние за счет возникновения связей между структурными элементами. На рис. 5.1 приведены данные о кинетике расходования двойных связей, нарастании внутренних напряжений, прочности при растяжении, модуля упругости и вязкости при формировании покрытий из этих, же систем. Из рисунка видно, что, несмотря на участие в процессе полимеризации на начальной стадии формирования значительного числа функциональных групп, покрытия характеризуются низкими внутренними напряжениями и физико-механическими характеристиками. Резкое нарастание последних наблюдается [c.182]

    Из изложенного видно, что существенную роль в формировании структуры и свойств полимерных покрытий играют поверхностные явления. В отличие от пленок и блочных материалов, процесс формирования покрытий имеет ряд специфических особенностей. Адсорбционное взаимодействие пленкообразующего с поверхностью твердых тел сопровождается формированием неоднородной дефектной структуры по толщине пленки. Изменение структуры по толщине пленки наблюдается для покрытий из пленкообразующих различного химического состава и класса (мономеров, олигомеров, растворов, расплавов и дисперсий полимеров). Характер изменения структуры по толщине покрытий определяется прочностью адгезионного взаимодействия и существенно зависит от текстуры подложки. Для покрытий с соотношением адгезионной к когезионной прочности большим 0,1—0,2 на границе с подложкой образуется слой толщиной 100—200 нм с однородной упорядоченной структурой из более мелких и плотно упакованных структурных элементов по сравнению с остальными слоями. Толщина таких слоев намного превосходит толщину монослоя, что свидетельствует о взаимодействии с поверхностью подложки не отдельных молекул, а образуемых ими надмолекулярных структур. [c.250]

    Таким образом, исследование процессов, происходящих в наполненных полимерных системах, с позиций термодинамики позволяет сделать выводы о структуре полимера в граничном слое вблизи поверхности раздела. Видно, что влияние наполнителя не ограничивается только слоями, лежащими в непосредственной близости к границе раздела. Это согласуется с данными о толщинах адсорбционных слоев, полученными различными методами, и может быть объяснено, как мы уже отмечали выше, только влиянием наполнителя на формирование надмолекулярных структур и взаимодействием их с поверхностью наполнителя, приводящим к изменению условий протекания релаксационных процессов и плотности упаковки макромолекул. [c.123]

    При термоокислении в блоке первая стадия процесса — укрупнение сферолитов — начинаясь в поверхностном слое, захватывает постепенно слой толщиной до 500 мкм и прекращается с окончанием индукционного периода окисления. Дальнейшие изменения надмолекулярной структуры протекают лишь в тонком поверхностном слое (до 125 мкм), поскольку кислород не успевает диффундировать в глубинные слои блока из-за большой скорости связывания его в поверхностном слое. Таким образом, поверхностный слой оказывает защитное действие по отношению к глубинным слоям блока [148, 153]. [c.99]

    В настоящее время имеется немного данных о структуре переходных слоев. Исследование структуры межфазного слоя в смеси полипропилен (ПП)—ПЭ методами оптической и электронной микроскопии показало, что в переходной зоне толщиной 1000 А отсутствуют четко выраженные надмолекулярные образования, а по мере удаления от границы раздела происходит постепенное изменение сферолитной структуры обоих компонентов [396]. [c.205]

    Экстремальные изменения радиуса надмолекулярной структуры II толщины сольватного слоя непосредственно влияют на характер зависимости структурно-механической прочности и агрегативной устойчивости нефтяной системы. Кривые изменения этих свойств типичны для многих нефтепродуктов. В точке Ж устойчивость нефтяных дисперсных систем к расслоению на фазы максимальна толщина сольватной оболочки в точке А имеет максимальное значение Я кс, благодаря чему уменьшается движущая сила процесса расслоения. Толстая прослойка дисперсионной среды между надмолекулярными структурами снижает структурно-механическую прочность нефтяных дисперсных систем, первый минимум которой достигается в точке К. Утоньшение сольватного слоя на поверхности надмолекулярных структур повышает движущую силу расслоения системы на фазы. После удаления основной части сольватного слоя (точка 3) дисперсионная среда начинает взаимодействовать непосредственно со слоем надмолекулярной структуры, обуславливая его полное разрушение в точке Б. В этой точке сложные структурные единицы переходят в состояние молекулярного растбора с бесконечной устойчивостью к расслоению на фазы. Предлагаемое объяснение экстремальных изменений структурномеханических свойств и агрегативной устойчивости нефтяных систем справедливо, если считать, что межфазная энергия на границе структурная единица — дисперсионная среда меняется незначительно. [c.41]

    Аналогично изменению толщины сольватного слоя иод действием РС среды может изменяться и толщина слоя надмолекулярной структуры НДС (ассоциата). Эта толщина формируется под влиянием разницы сил межмолекулярного взаимодействия ВМС и растворяющей силы сольватного слоя. На образование сольватного слоя в свою очередь, как было ранее показано, оказ[>1вает влияние растворяющая сила дисперсионной среды. В общем случае эти изменения могут быть представлены в следующем виде  [c.62]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Электронно-микроскопические исследования показали [8-34], что при нагревании СУ до 3000 С в основном наблюдаются образования, имеющие морфологию сажи (рис. 8-14). СУ сохраняет в основном морфологические признаки исходных полимеров [8-37, 39]. На электронной микрофотографии рис. 8-14 можно видеть набор претерпевших изменения глобул, которые близки по структуре к неграфитирующимся частичкам сажи. Исходя из этого модель основного каркаса неграфитирующегося углерода может быть изображена в виде взаимно переплетающихся углеродных лент, которые состоят из многократно изогнутых пачек гексагональных слоев (рис. 8-15). Гексагональные слои в пачках располагаются неупорядоченно (турбостратно). Средняя толщина пачек соответствует значению а расстояния до изгибов лент. В местах пересечения, по-видимому, уже на стадии отверждения ленты сшиваются. При дальнейшем термолизе, на основании изучения электронных микрофотографий можно считать, что надмолекулярная структура претерпевает изменения, но сохраняет свою морфологию. Данное обстоятельство препятствует переходу основного вещества СУ в трехмерноупорядоченное состояние. Различная упаковка глобул у СУ, полученного при 900 С, показана на рис. 8-16. [c.494]

    Адсорбция полимера из растворов на твердых поверхностях весьма апецифична и существенно отличается от адсорбции низкомолекулярных веществ. Эти отличия связаны с тем, что при адсорбции на поверхность адсорбента переходят не изолированные полимерные материалы (за исключением случаев (предельно разбавленных растворов), а агрегаты молекул или другие их надмолекулярные образования, возникающие в растворах уже при относительно небольших концентрациях. С изменением концентрации растворов происходит непрерывное изменение как размера, так и формы адсорбируемых частиц [5]. Молекулярная подвижность в адсорбционном слое немонотонно изменяется с толщиной слоя. Это обусловлено сложными изменениями структуры адсорбционного слоя в зависимости от концентрации раствора, из которого ведется адсорбция. [c.52]

    Из полученных данных вытекает, что структурные превращения в процессе старения под действием ультрафиолетового облучения сопровождаются разрушением структур, ранее возникших при формировании, и образованием новых, упорядоченных структур, не наблюдаемых при формировании покрытий. В зависимости от характера образующихся структур и прочности связи между ними изменяются механические и теплофизические параметры покрытий. Надмолекулярная структура, возникшая в межфазных слоях на границе с подложкой, является более прочной и стойкой к действию ультрафиолетового облучения. Из этих результатов также следует, что пленки толщиной 300—400 мкм из полиэфирных и эпоксидных олигомероЕ являются проницаемыми для ультрафиолетовых лучей, а структурные изменения в слоях, граничащих с подложкой, наблюдаются уже через 1,5 ч облучения. Эти данные хорошо согласуются с результатами, приведенными в работах [47, 48]. [c.32]

    Ярким примером зависимости кинетики реакции от наличия надмолекулярных образований может служить термоокислительная деструкция полипропилена, подробно исследованная в работах Шляпникова с сотр. [56—59]. Хотя реакции деструкции выходят за рамки нашего рассмотрения, надмолекулярные эффекты, проявляющиеся при окислении полипропилена, представляются достаточно интересными для макромолекулярных реакций вообще. Так, было показано [56], что термоокислительная деструкция идет преимущественно в аморфных областях. Если же сравнивать кинетику реакции в образцах с разной кристаллической структурой, то оказывается, что крупносферолитный полипропилен окисляется медленнее, чем мелкосферолитный [57]. Реакция также весьма чувствительна к толщине образца — в поверхностных слоях толстых образцов (300 мкм) деструкция протекает до большей глубины, чем в тонкой (30 мкм) ориентированной пленке, окисленной в тех же условиях [-58]. Скорость реакции окисления зависит и от степени вытяжки ориентированного образца [59], причем возрастание скорости в этом случае сопровождается увеличением степени кристалличности, что должно было бы приводить к замедлению реакции. Авторы [59] предполагают, что в ориентированном полипропилене кинетика реакции меняется в результате изменения конформаций цепей, входящих в аморфные области, и их конформационной подвижности. [c.49]


Смотреть страницы где упоминается термин Надмолекулярные структуры изменение толщины слоя: [c.227]    [c.38]    [c.31]    [c.50]    [c.217]    [c.476]    [c.217]    [c.212]    [c.141]    [c.252]    [c.51]   
Нефтяной углерод (1980) -- [ c.62 ]

Нефтяной углерод (1980) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение структуры пор

Структуры надмолекулярные

Толщина

Толщина слоя



© 2025 chem21.info Реклама на сайте