Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые примеры применения флуоресценции

    Некоторые примеры применения флуоресценции [c.68]

    Охлаждение анализируемых растворов до —196 °С (температура кипения жидкого азота) позволяет в большинстве случаев значительно увеличить интенсивность флуоресценции, а также способствует появлению фосфоресценции. Некоторые растворы комплексов, не флуоресцирующих при комнатной температуре, дают свечение при понижении температуры. Фосфоресценция имеет большую длительность возбужденного состояния, а ее спектр смещен в длинноволновую область по сравнению с флуоресценцией. Фосфоресцентный метод имеет большую селективность по сравнению с флуоресцентным, так как в большинстве случаев фосфоресценцией обладают лишь комплексные соединения, в то время как сами органические реагенты не обладают фосфоресценцией, а только флуоресценцией. Отделение свечений производится при применении прибора фосфороскопа. В качестве примера можно привести фосфоресцирующие комплексы гадолиния и бериллия с дибензоилметаном, а также меди с порфиринами. [c.214]


    Некоторые примеры использования флуоресценции, относящиеся к последнему времени, включают применение флуорексона в качестве индикатора при титровании кальция раствором натриевой соли EDTA [13] и антраценового синего SVG в сильно сернокислых растворах для определения следов бора в магнии [14]. [c.172]

    Вероятность передачи этого рода решающим образом зависит от резонанса между молекулами, обменивающимися энергией, т. е. от взаимного перекрытия полосы флуоресценции донора и полосы поглощения акцептора. Это явление впервые обсуждалось Кальманом и Лондоном в применении к сенсибилизированной флуоресценции в газах. Позднее аналогичные соображения в применении к растворам были развиты Ж. Перреном [8, 10], который использовал классическую электродинамику. Ф. Перрен (И, 16] впервые попытался дать явлению квантово-механическую трактовку. Он использовал этот механизм переноса энергии для объяснения так называемой концентрационной деполяризации флуоресценции в растворе (уменьшение степени поляризации при увеличении концентрации). Впоследствии некоторые другие явления флуоресценции и фотохимии были приписаны обменным процессам этого типа и более совершенное теоретическое толкование было развито в работах Вавилова и его сотрудников [65—67], а также Фёрстером [71, 73, 76] и Арнольдом и Оппенгеймером [91]. Ввиду того, что представления о резонансном переносе энергии могут сыграть важную роль в выяснении фотохимического механизма фотосинтеза (особенно при объяснении возможной роли фикобилинов и каротиноидов в этом процессе), перечисленные работы будут более подробно рассмотрены в гл. XXX и XXXII. Здесь мы упомянем лишь о возможности тушения или возбуждения флуоресценции хлорофилла путем резонансного переноса энергии возбуждения, не требующего контакта молекул. В качестве примеров можно напомнить тушение флуоресценции красителей другими красителями (стр. 188), флуоресценцию [c.167]

    Термин флуоресценция был введен Стоксом (1852) для давно известного явления [68] — способности некоторых веществ светиться при обыкновенной температуре под влиянием освещения и только во время освещения (способность светиться после освещения получила название фосфоресценции). Стокс сформулировал свой известный закон, согласно которому длина волны в спектре флуоресценции всегда больще длины волны поглощенного света. Ломвдель (1871) на примере хлорофилла и некоторых других органических соединений показал, НТО закон Стокса имеет исключения. С начала 80-х годов химики начали изучать зависимость между способностью веществ к флуоресценции и их химическим строением. Р. Мейер (1897) связал эту способность с присутствием в молекулах особых групп — флуорофоров . Кауфман, автор монографии Флуоресценция и химическая конституция (1906), ввел понятие о группах — флуорогенах , способность которых к флуоресценции проявляется в присутствии других групп ауксохромов. Штарк (1907) открыл способность флуоресцировать при освещении ультрафиолетовыми лзгчами. Однако к этому времени стало ясно, что спектры флуоресценции для структурной органической химии менее перспективны, чем ультрафиолетовые спектры. Со всей определенностью это положение сформулировал Штарк Так как связь флуоресценции с коротковолновыми полосами поглощения может считаться надежно установленной и так как полосы поглощения легче обнаружить и измерить, чем полосы флуоресценции, представляется целесообразным вопрос о связи между положением полос флуоресценции и молекулярной конституцией заменить вопросом о связи между спектрами поглощения и конституцией [69, с. 223]. За 50 лет положение мало изменилось. Спектры флуоресценции, несмотря на их успешное применение в отдельных случаях (о чем будет упомянуто далее), не стали таким же мощным средством исследования в аналитической органической химии, как другие методы, рассмотренные [c.241]


    Школой С. И. Вавилова была разработана важная область практического применения люминесценции — люминесцентный анализ. Датой его зарождения можно считать 4 марта 1864 г., когда Стокс сделал в Королевском обществе Великобритании доклад [100], повторенный в расширенном виде 2 июня того же года в Лондонском химическом обществе под названием О применении оптических свойств тел для открытия и распознавания органических веществ [101]. Среди оптических свойств Стокс указал и на флуоресценцию растворов и дал примеры ее использования. Выражение флуоресцентный анализ впервые применил в 1868 г. Фридрих Гоппельсрёдер в статье по исследованию морина и его флуоресцентных реакций с некоторыми элементами, в частности с алюминием [83]. Но, как указал [c.21]

    Явление свечения кристаллофосфоров тоже может быть использовано для определения микропримесей элементов, в большинстве случаев для катионов тяжелых металлов, урана и некоторых редкоземельных элементов. Многие соли или окислы в твердом состоянии способны ф.пуоресцировать, ес.ти их кристаллическая решетка деформирована внедрившимися в нее посторонними катионами — активаторами. Это явление может быть использовано аналитиками д.тя обнаружения и количественного определения этих катионов — активаторов, способных привести, после их внедрения в кристаллическую решетку, к возникновению флуоресценции у кристалла. Исключительно высокая чувствительность этого метода была показана еще в 1935 году [82]. В настоящее время число методов количественного определения катионов с применением кристаллофосфоров все увеличивается [83]. Многие из них ониса-ны в книге К. П. Столярова [84]. В качестве примера, демонстрирующего возможности этого метода, в данном сборнике приведен разработанный нами полуколичественный метод определения сурьмы на основе приготовления кристаллофосфо-ра СаО (Sh). [c.23]


Смотреть страницы где упоминается термин Некоторые примеры применения флуоресценции: [c.316]    [c.316]    [c.200]    [c.534]   
Смотреть главы в:

Экспериментальные методы химической кинетики -> Некоторые примеры применения флуоресценции




ПОИСК





Смотрите так же термины и статьи:

Некоторые примеры

Примеры применения

Флуоресценция



© 2025 chem21.info Реклама на сайте