Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Продукты генные, идентификация

Рис. 20.23. Функциональное картирование. Идентификация гена для случая, когда известна аминокислотная последовательность его продукта. Рис. 20.23. <a href="/info/1549615">Функциональное картирование</a>. Идентификация гена для случая, когда <a href="/info/1891268">известна аминокислотная последовательность</a> его продукта.

    Для идентификации нужного гена человека используют четыре метода. В первом из них, функциональном картировании, на основе данных о генном продукте синтезируют зонды для скрининга кДНК-библиотеки. Положительный кДНК-клон, содержащий кодирующую область гена-мишени, используют для отбора геномных клонов и характеристики гена в целом. Второй подход, кандидатное картирование, основывается на выборе генов, которые по имеющимся [c.480]

Рис. 20.30. Позиционно-кандидатное картирование. Идентификация гена заболевания в том случае, когда продукт гена неизвестен, но ген картирван в том же хромосомном районе, что и некоторые функциональные гены и EST. Из этих генов и EST отбирают кандидатные и определяют, какие из них соответствуют искомому гену. Рис. 20.30. <a href="/info/200367">Позиционно-кандидатное картирование</a>. Идентификация гена заболевания в том случае, когда <a href="/info/91036">продукт гена</a> неизвестен, но ген картирван в том же хромосомном районе, что и <a href="/info/1463351">некоторые функциональные</a> гены и EST. Из этих генов и EST отбирают кандидатные и определяют, какие из них соответствуют искомому гену.
    Каждая глава завершается подробным резюме и списком вопросов для повторения. Мы надеемся, что это поможет усвоить прочитанное. Все ключевые идеи иллюстрируются тщательно подобранными цветными рисунками (всего их более 200) мы убеждены, что один рисунок может сказать больше, нежели тысяча слов. Гл. 1 знакомит читателя с основами молекулярной биотехнологии и некоторыми коммерческими аспектами, а следующие пять глав (гл. 2-6) — с ее методологией. Все вместе эти главы подготовят читателя к восприятию материала всех последующих глав. В гл. 7-12 части II рассмотрены способы получения ценных метаболитов, вакцин, лекарственных веществ и продуктов, использующихся для диагностики, а также методы биодеградации удобрений и пестицидов. В гл. 13 описаны способы крупномасштабного культивирования генетически измененных микроорганизмов с целью получения коммерческих продуктов. Часть. III посвящена молекулярной биотехнологии растений и животных (гл. 14 и 15). Гл. 16 и 17 знакомят читателя с применением технологии рекомбинантных ДНК для идентификации генов человека, ответственных за развитие некоторых заболеваний, и подходами к генной терапии. В последней, IV части рассмотрены вопросы регламентации исследований в области молекулярной биотехнологии, оформления патентов на различные продукты и изобретения. [c.10]

Рис. 20.25. Позиционное картирование. Идентификация гена, продукт которого неизвестен, с помощью хромосомного картирования и зондов, специфичных в отношении тесно сцепленных маркеров. Рис. 20.25. <a href="/info/200366">Позиционное картирование</a>. Идентификация гена, продукт которого неизвестен, с помощью <a href="/info/1338480">хромосомного картирования</a> и зондов, специфичных в отношении <a href="/info/1356550">тесно сцепленных</a> маркеров.

    В отличие от классической, в новой генетике изменился подход к анализу генов. В классической генетике последовательность была следуюшей идентификация менделирующего признака локализация гена в хромосоме (или группе сцепления) первичный продукт гена ген. В современной генетике стал возможным и обратный подход выделение гена секвенирование первичный продукт, в связи с чем был введён новый термин для определения такого направления исследований обратная генетика или генетика наоборот . [c.19]

    Для эффективной экспрессии любого гена совершенно необходимо наличие сильного регулируемого промотора, расположенного перед данным геном. Такой промотор имеет высокое сродство к РНК-полимеразе, поэтому прилегающие к нему последовательности эффективно (с высокой частотой) транскрибируются. Регулируемость промотора позволяет клетке (и исследователю) осуществлять строгий контроль транскрипции. Для экспрессии клонированных генов широко используется промотор хорошо изученного la (лактозного)-оперона Е. соН. Однако есть и другие промоторы, обладающие полезными для контроля экспрессии свойствами. Для их идентификации перед так называемым геном-репортером, кодирующим легко регистрируемый продукт, но лишенным [c.105]

    Для многих наследственных заболеваний никаких достаточно эффективных способов лечения не существует, и во многом это связано с трудностями получения и адресной доставки соответствующего генного продукта. После разработки методов идентификации и клонирования нормальных вариантов дефектных ге- [c.510]

    Стратегия идентификации гена конкретного заболевания, основанная на данных о возможном продукте данного гена. [c.550]

    Одна из стратегий идентификации гена заболевания в отсутствие данных о продукте этого гена и каких-либо генов-кандидатов. В подобных случаях сначала определяют хромосомную локализацию (позицию) гена. Затем получают геномные клоны, охватывающие картированный сайт (используя соответствующие маркеры), идентифицируют и анализируют присутствующие в них экзоны. Используя целый ряд методов (идентификация G -островков, улавливание экзонов, секвенирование, компьютерный анализ и т.д.), определяют, какой именно ген ответствен за данное заболевание. [c.556]

    Идентификация гена исходя из известной аминокислотной последовательности его продукта. [c.563]

    Для получения коммерческих продуктов с помощью рекомбинантных микроорганизмов необходимо сотрудничество специалистов в двух областях молекулярных биологов и биотехнологов. Задача молекулярных биологов заключается в идентификации, изучении свойств, модификации нужных генов и создании эффективных систем их экспрессии в клетках микроорганизмов, которые можно будет использовать для промыщ-ленного синтеза соответствующего продукта, а задача биотехнологов — в обеспечении условий оптимального роста нужного рекомбинантного микроорганизма с целью получения продукта с наибольщим выходом. На заре развития молекулярной биотехнологии ученые наивно полагали, что переход от лабораторного синтеза к промышленному — это вопрос простого увеличения масштаба, т. е. условия, оптимальные для малых объемов, будут оптимальными и для больших, так что достаточно просто взять больший реактор и соответственно больший объем культуральной среды. [c.349]

    Идентификация клонов. Если вставка содержит гены, способные к экспрессии в новом хозяине, рекомбинантные клоны могут быть идентифицированы по синтезируемому ими продукту. Однако чаще приходится идентифицировать непосредственно нуклеотидную вставку, для чего используют методы гибридизации. Бактериальные (нлн фаговые) колонии выращиваются на нитроцеллюлозных фильтрах, помещенных на чашку Петри с питательной средой (рис. 253). После этого приготавливаются так называемые реплики — к фильтру с исходными колониями прижимается свежий нитроцеллюлозный фильтр, который затем переносится на чашку Петри с плотной питательной средой, где на нем образуются колонии, идентичные первым. [c.436]

    Чтобы снизить вероятность получения ошибочных результатов, мы советуем исследовать лизат, содержащий гибридные белки, с помощью вестерн-блот-анализа с использованием антител к -галактозидазе (рис. 5.3) —это позволяет детектировать все минорные продукты. Кроме того, все получаемые результаты необходимо сопоставить с анализом нуклеотидной последовательности клонированный ДНК. Для идентификации продуктов клонированных генов можно также использовать вторые антитела, специфичные к антигенным детерминантам, которыми предположительно должен обладать гибридный белок. Поскольку уровень экспрессии гибридных белков высок, мы рекомендуем использовать иммуноферментный метод выявления антигенов с помощью вестерн-блот-анализа (табл. 5.2) ввиду надежности и быстроты этого метода. [c.149]

    Ведущиеся ныне ожесточенные дебаты о трансгенных сельскохозяйственных растениях сосредоточены на двух основных проблемах безопасности и беспокойстве о равном доступе и праве собственности. Обеспокоенность потенциальной опасностью ГМО базируется преимущественно на представлениях о том, что введение чужеродных ДНК в основные сорта продовольственных культур противоестественно и, стало быть, сопровождается неустранимым риском для здоровья. Но поскольку все живые организмы, включая продовольственные растения, животных, микробов и т. д., содержат ДНК, как можно считать рекомбинантные ДНК противоестественными Даже определить понятие чужеродный ген и то проблематично, поскольку множество генов оказываются общими для самых разных организмов. Конечно, необходимо помечать ГМ-продукты, особенно в тех случаях, когда их свойства заметно отличаются от традиционных (скажем, по пищевой ценности) или в них присутствуют явные аллергены или токсины. Но в чем смысл такой идентификации в тех слу- [c.35]


    Нет ничего удивительного в том, что из-за трудностей выделения и идентификации многие результаты, полученные исследователями в прошлые годы, было трудно объяснить. Кроме того, многие ациклические представители этой группы терпеноидов легко претерпевают реакцию циклизации, а некоторые бицикли-ческие продукты легко перегруппировываются. Последнее обстоятельство представляло собой значительную трудность на тогдашней ступени развития химии, и для решения этой проблемы потребовался теоретический гений такого крупного ученого, каким был Вагнер. [c.29]

    Регуляторный ген lad был первоначально идентифицирован при выделении мутаций, влияющих на выражение всех трех структурных генов, но картирующихся вне этих генов. Поскольку мутации lad комплементировали мутации в структурных генах, они были использованы для идентификации другого гена, кодирующего диффундирующий продукт. [c.178]

    Вариабельность потери хромосом человека у клеточных гибридов мышь—человек облегчает картирование человеческих генов. Для картирования генов мыши используют клеточные гибриды мышь—хомячок. Если присутствие продукта изучаемого гена коррелирует с наличием какой-либо одной хромосомы в гибриде, то этот ген, скорее всего, локализован в этой хромосоме. Должны соблюдаться два условия. Во-первых, исследуемый признак, кодируемый хромосомами человека, должен четко (на клеточном уровне) отличаться от аналогичного признака мыши. Например, исследуемая линия клеток человека содержит мутантную лактатдегидрогеназу А (LDH-A). Этот фермент отличается от белка, кодируемого соответствующим мышиным геном. Эти две формы легко разделяются при гель-электрофорезе. Второе условие, необходимое для картирования,-возможность идентификации данной человеческой хромосомы, присутствующей в исследуемой клеточной линии. [c.297]

    Биохимическая идентификация продуктов вирусного гена при нечетком определении вирусного потомства [c.17]

    Метод гибридизации клеток позволяет изучать и локализовать гены, продукты которых можно идентифицировать как в клетках человека, так и в клетках животных. Один из путей идентификации - использование селективной системы. [c.201]

    Важная информация о взаимном родстве бактерий может быть получена при изучении клеточных белков — продуктов трансляции генов На основании изучения мембранных, рибосомных, суммарных клеточных белков, а также отдельных ферментов сформировалось новое направление — белковая таксономия. Спектры. рибосомных белков относятся к числу наиболее стабильных и используются для идентификации бактерий на уровне семейства или порядка Спектры мембранных белков могут отражать родовые, видовые и даже внутривидовые различия. Однако характеристики химических соединений клетки не могут использоваться для идентификации бактерий изолированно от других данных, описывающих фенотип, поскольку нет критерия оценки значимости фенотипических признаков. [c.195]

    В 1978 г. было сделано очень важное открытие было показано, что продукт гена sr является ирошеинккназой-ферментом, катализирующим перенос фосфата с какого-либо нуклеоизидтрифосфата на определенные аминокислотные остатки некоторых белков (разд. 13.4,1), Вскоре выяснилось, что и ряд других онкогенных белков-протеинкиназы. Каждая из вирус-специфических киназ фосфорилирует несколько белков это объясняет множественные эффекты соответствующих онкогенов. Многие киназы ретровирусов отличаются от обычных протеинкиназ тем, что фосфорилируют боковые цепи тирозина, а не серина и треонина, как подавляющее большинство протеинкиназ. Поскольку фосфорилирование тирозина-процесс редкий, в белках клеток, зараженных онкогенными вирусами, может быть в 5-10 раз больше фосфотирозина, чем в белках нормальных клеток. Идентификация этих фосфорилированных белков и выяснение их функций имеют огромное значение для понимания механизмов вирусного канцерогенеза. Обнаружено пока лишь несколько таких белков один из них - актин-связывающий белок винкулин (разд. 10,5,6 и 10.7,4), Однако еще нет доказательств того, что какой-либо из этих белков участвует в индукции или поддержании трансформированного фенотипа. [c.155]

    Методы определения поверхностных клеточных антигенов нашли широкое применение во многих областях биологии. Среди антигенов клеточной поверхности первыми были описаны продукты генов главного комплекса гистосовместимости — те самые антигенные молекулы, которые обусловливают иммунологическую индивидуальность организма (Klein, 1975). Кроме этих универсальных поверхностных антигенов, присущих всем клеткам данной особи, отдельные клеточные популяции обладают уникальными, свойственными только им антигенами. Это было использовано при анализе тканей нервной системы (S ha hner et al., 1975) и особенно успешно — для идентификации многочисленных субпопуляций морфологически неразличимых лимфоцитов (Raff, 1971). [c.273]

    Лабораторная диагностика наследственных болезней (фено- или генотипи-рование индивидов) может быть направлена на идентификацию одной из трёх ступеней болезни. Во-первых, это выявление этиологической причины наследственной патологии, или характеристика генотипа, т.е. определение конкретной мутации у индивида (генной, хромосомной, геномной). Эти цели достигаются с помошью цитогенетических или молекулярно-генетических методов. Во-вторых, лабораторные методы позволяют регистрировать первичный продукт гена. Для этого используются биохимические и иммунологические методы. В-третьих, возможна регистрация специфических метаболитов изменённого обмена, возникших в процессе реализации патологического действия мутации. Такая регистрация возможна на уровне жидкостей (кровь, моча, секрет) или клеток. Следовательно, на этой ступени можно применять биохимические, иммунологические и цитологические методы, что и нашло подтверждение в клинической практике. [c.248]

    Метод гибридизации ДНК и иммунологические методы позволяют идентифицировать многие гены и их продукты. Если при этом искомый ген кодирует фермент, не синтезируемый клеткой-хозяином, то для обнаружения клонов, содержащих данный ген, можно использовать метод идентификации на чащках. Так были идентифи- [c.69]

    Для идентификации трансформированных клеток необходимо уметь обнаруживать чужеродную ДНК, интегрировавшую в геномную ДНК растения. Более того, при исследовании сигналов регуляции транскрипции и их функций в специфических растительных тканях (листьях, корнях или цветках) зачастую важно уметь количественно оценивать уровень экспрессии гена, кодирующего легко идентифицируемый продукт. Все это требует применения репортерных генов, которые позволяют либо проводить отбор трансформированных клеток, либо оценивать активность кодируемого ими фермента. Было протестировано несколько разных генов, которые можно использовать как доминантные селективные маркеры, и генов, чей белковый продукт можно обнаружить с помощью специфических методов (табл. 17.4). Поскольку многие из ренортерных генов имеют бактериальное происхождение, они были снабжены регуляторными последовательностями, обеспечивающими их экспрессию в растительных клетках. Проводя отбор по доминантному маркеру, можно получить культуру, содержащую только трансформированные клетки. Так, в присутствии канамицина выживают только клетки растений, синтезирующих активную неомицинфосфо-трансферазу. [c.381]

    Идентификация экспрессирующих рекомбинантных клонов. ТИе-тод идентификации экспрессирующих клонов зависит от свойств продукта экспрессии. Если этот продукт обладает собственной биологической активностью, то ои может быть идентифицирован по ее проявлению. Например, если экспрессии подвергается ген, кодирующий фермент, то клоны идентифицируют по наличию в них соответствующей ферментативной активности клоны, синтезирующие интерферон,— по противовирусной активности клеточных экстрактоа и т. д. [c.439]

    Разработаны специализированные методы анализа и идентификации фрагментов ДНК, в том числе содержащих специфические гены. Предложены также процедуры разделения, служащие для выделения таких фрагментов ДНК. Другие аналитические методы используются для идентификации генетически видоизмененных клеток, в которые введена нужная ДНК, а также таких клеток, где эта ДНК (через промежуточную мРНК) управляет синтезом белков. Опять-таки выделение белкового продукта требует использования процедур разделения. Таким образом, применение химических приемов при работе с биологическими системами составляет сердцевину технологий, базируюыщхся на использовании рекомбинантной ДНК. [c.119]

    Другие методы идентификации рекомбинантных плазмид основаны на экспрессии включенного в них гена. При этом идентифицируется белковый продукт, для чего используются иммунологические методы или методы определения его специфической активности. Для обнаружения антигенов в бактериях путем скрининга, на основе специфического их взаимодействия с антителами, часто используется метод, разработанный Брумом и Джилбертом. Для этого пластиковый диск покрывают слоем специфических радиоактивных антител и помещают его на предварительно лизированные колонии. Антигены из лизиро-ванных бактерий связываются с антителами на диске. Положение антигенов, адсорбированных на диске, определяют с помощью радиоавтографии. [c.316]

    Симбиотические гены бобовых, выявляемые путем идентификации их продуктов (а часто и сами эти продукты), называют нодулинами (если в клубеньках они активируются de novo) или Nst-генами (если их активность существенно возрастает в клубеньках по сравнению с корнями). Для выявления этих генов сравнивают спектры белков (РНК), синтезируемых либо в клубеньках и стерильных корнях, либо в фиксирующих и нефиксирующих азот клубеньках. Соответственно, нодулины и Mst-гены разделяют на ранние (активируются до начала азотфиксации) и поздние (активируются с началом или во время азотфиксации). [c.174]

    Основным приоритетным направлением научных исследований в области нормативного обеспечения Госстандарт России считает разработку Концепции стандартизации генно-модифицированных продуктов , внесение изменений в действующие нормативные документы на пищевую продукцию, продовольственное сырье и методы испытания в части включения дополнительных требований по генетической чистоте, нормам использования и методам испытания, идентификации и маркировке генно-модифицированных продуктов питания на пороговые уровни потребления для человека ГМ-продуктов питания. Перед наукой ставятся также задачи по разработке и совершенствованию правил и порядка оценки соответствия ГМ-продуктов питания требованиям генетической безопасности нормативных документов по государственному контролю и надзору за производством, хранением, реализацией и обращением ГМ-продуктов питания. Перечисленные нормативно-правовые документы крайне необходимы для повышения уровня контроля за биобезопасностью в биоинженерии и использования ее результатов в производстве и продовольственном обеспечении населения страны и вывоза продукции на экспорт. Отсутствие таких документов сдерживает реализацию научных достижений биоинженерии в стране. Этот пробел должен быть устранен в самое короткое время. [c.413]

    Таким образом, даже при помощи этих относительно простых методов и в соответствии со сделанными раннее выводами W. Laver [71] были обнаружены различия во внутренних вирусных белках между вирусными штаммами (73]. Эти наблюдения крайне важны для четкой идентификации биохимическими методами природы генных продуктов, содержащихся в предположительно рекомбинантном вирусе. По мере совершенствования электрофоре- [c.17]

    Открытие явления сплайсирования берет свое начало из идентификации в инфицированных вирусом гриппа типа А клетках второго неструктурного белка, NS2, с м.м. 11000, для которого профиль триптического пептида отличался от такового для других 8 продуктов вирусного гена. Это означает, что один из 8 сегментов вРНК (генома) должен кодировать два белка [56]. Восьмой сегмент (наименьший сегмент вРНК), как было установлено, кодирует не только белок NS1, но и белок NS2. Это было показано в экспериментах с рекомбинантными вирусами, в которых белки NS1 и NS2 были пересортированы вместе [35, 53]. Две различные [c.84]


Смотреть страницы где упоминается термин Продукты генные, идентификация: [c.299]    [c.118]    [c.338]    [c.67]    [c.444]    [c.556]    [c.441]    [c.115]    [c.44]    [c.504]    [c.331]    [c.466]    [c.220]    [c.202]   
Генетика вирусов гриппа (1986) -- [ c.0 ]

Генетика вирусов гриппа (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вирусное потомство, определение нечеткое, биохимическая идентификация генных продуктов

Продукты генные, идентификация биохимическая



© 2024 chem21.info Реклама на сайте