Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная возникновение

    Более совершенную модель металлической связи позволяет создать теория молекулярных орбиталей. Согласно этой модели, весь кристалл металла следует рассматривать как одну гигантскую молекулу. Все атомные орбитали определенного типа взаимодействуют в кристалле, образуя совокупность делокализованных орбиталей, простирающихся по всему кристаллу. Число валентных атомных орбиталей в отдельном кристалле достигает 10 . Чтобы представить себе, как происходит взаимодействие столь большого числа валентных орбиталей, рассмотрим гипотетическую последовательность линейных молекул лития, Ыг, з, в которых основную роль играют валентные 25-орбитали. На рис. 14-24 показано образование молекулярных орбиталей для трех указанных молекул. Отметим, что вследствие делокализации молекулярных орбиталей ни одному из электронов не приходится располагаться на разрыхляющей орбитали. По мере удлинения цепочки атомов в молекуле расстояние между орбитальными энергетическими уровнями все более сокращается. В предельном случае для кристалла, состоящего из 10 атомов, комбинация атомных орбита-лей приводит к возникновению широкой полосы, или, как говорят, зоны, тесно расположенных энергетических уровней. [c.625]


    Поворотным пунктом в развитии теории химии и органической химии, в частности, явился Первый международный конгресс химиков, который проходил Е 1860 году в г. Карлсруэ. С этих пор в химию прочно вошли достаточно строгие определения понятий атом, молекула, эквивалент, атомный и молекулярный вес, валентность. Начала свою жизнь теория валентности, возникновение которой в [c.15]

    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]

    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]

    Атом бора имеет три валентных электрона и четыре валентные орбитали. Обычно он использует три орбитали, образуя 5р -гибриды в таких соединениях, как ВРз- Углерод имеет четыре валентных электрона и четыре орбитали. За исключением тех случаев, когда он образует кратные связи, эти орбитали используются для 5р -гибридизации. Атом азота имеет пять валентных электронов и четыре орбитали. Как правило, он образует три связи с другими атомами в структурах с тетраэдрической конфигурацией, а четвертая гибридная 5р -орбиталь у него занята неподеленной электронной парой (разд. 13-3). Углерод и азот способны образовывать двойные и тройные связи в результате я-перекры-вания, обсуждавшегося в разд. 13-4. По сравнению с длиной простой связи длина двойных связей, образуемых этими элементами, сокращается на 13%, а длина тройных связей-на 22%. Прочность кратной связи повыщается благодаря наличию электронов на связывающей молекулярной п-орбитали, возникающей в результате перекрывания атомных я-ор-биталей. Но перекрывание я-типа между орбиталями становится достаточно больщим для возникновения связи только при близком расположении атомов. По этой причине 81 и другие элементы третьего и следующих периодов неспособны образовывать кратные связи. Кремний имеет 10 внутренних электронов по сравнению с 2 в атомах С и N. Отталкивание этих внутренних электронов не позволяет двум атомам 81 сблизиться настолько, насколько это необходимо для достаточного я-перекрывания р-орбиталей и возникновения двойных связей. Несмотря на все попытки химиков синтезировать соединения со связями 81=81 и 81=С, ни одна из них до сих пор не увенчалась успехом. За небольшими исключениями, образование двойных и тройных связей ограничено элементами второго периода, в атомах которых число внутренних электронов не превышает 2. Исключения, к числу которых относятся 8=0, Р=0 и 81=0, объясняются перекрыванием между р- и -орбиталями, этот вопрос будет рассмотрен в разделе, посвященном кремнию. [c.271]


    В производственных условиях при возникновении аварии жидкостные огнепреградители оказываются весьма надежными. В определенных случаях при наличии гидрозатворов у основания факельного ствола можно не предусматривать установку молекулярных затворов и промывку факельного ствола инертным газом. [c.220]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    Основные электрохимические явления — это процессы, протекающие на границах различных фаз. Работа электрохимического элемента и его электродвижущая сила — это лишь суммарное проявление совокупности процессов, совершающихся на границах фаз, поэтому изучению молекулярных процессов на границах фаз, являющихся причиной возникновения на этих границах скачков потенциалов и, следовательно э.д.с., в теоретической электрохимии уделяется основное внимание. Однако отдельные скачки потенциала обычно нельзя измерить измеряются лишь электродвижущие силы. [c.519]

    Можно попытаться проанализировать с молекулярной точки зрения пути возникновения вязкого торможения. Если в среде газа находится движущаяся поверхность, то молекулы, сталкивающиеся с поверхпостью, будут отлетать с большей компонентой количества движения в направлении движения поверхности (если поверхность шероховатая). Эти молекулы в свою очередь будут сталкиваться с другими молекулами и передавать таким путем через весь газ дополнительное количество движения, полученное от движущейся поверхности. Именно этот перенос количества движения и является вязким торможением. [c.157]

    Связь между своеобразной структурой эластомеров и их способностью к необычайно большим обратимым деформациям очевидна. Качественно она может быть описана следующим образом. Под действием внешних сил, например, растяжения, молекулярные цепи могут разворачиваться, принимая менее свернутые конфигурации, частично ориентированные в направлении оси растяжения. Стремление молекулярных цепей перестроиться таким образом, чтобы принять свои первоначальные конфигурации, обусловленное уменьшением энтропии вытянутых, частично упорядоченных состояний цепи, приводит к возникновению упругой возвращающей силы. [c.18]

    В некоторых работах приводятся слишком большие (>10) значения индекса полидисперсности каучуков эмульсионной поли- ер1 ации [12, 37, 38]. Появление аномально высоких значений MjMn обусловлено в большинстве случаев наличием в полимере микрогеля. Молекулярная масса микрогеля равна нескольким десяткам миллионов, поэтому даже незначительное содержание его в полимере сильно увеличивает Яу,. Возникновения микрогеля и макрогеля далеко не всегда удается избежать даже при использовании регулятора молекулярной структуры. Рыхлый микрогель, а в некоторых случаях и макрогель, содержатся в бутадиен-нитрильных каучуках [33, 38]. Микрогель, содержащийся в бутадиенстирольном каучуке типа 1502, подробно описан в работе [39]. [c.67]

    Нарушается ли при образовании трехцентровой связи принцип, указанный в гл. 12 и 13, согласно которому комбинация определенного числа атомных орбиталей приводит к такому же числу молекулярных орбиталей Сколько молекулярных орбиталей, образующихся при возникновении трехцентровой связи, остается незанятыми электронами  [c.340]

    Исследование устойчивости дисперсии ПА в растворах различных электролитов проводили методом поточной ультрамикроскопии. При рН = 2 и рН = 3 в широком интервале концентраций КС1 (от 1-10 2 до 3-10 М) дисперсия ПА является агрегативно устойчивой. При концентрации 5-10 М при рН = 2 в системе наблюдается обратимая агрегация (степень агрегации ш = 1,7). Из расчетов энергии взаимодействия частиц по теории ДЛФО следует, что при концентрациях электролита 1 1, превышающих 1-10 моль/л, на всех расстояниях молекулярные силы преобладают над ионно-электростатическими. Таким образом, наблюдаемое отсутствие агрегации частиц вплоть до концентраций КС1 5-10 моль/л может быть объяснено тем, что реальная потенциальная яма не достигает достаточной глубины, необходимой для образования агрегатов. Это, очевидно, связано с существованием ГС воды у поверхности частиц ПА, что обусловливает возникновение структурной составляющей расклинивающего давления. [c.183]


    По мере увеличения энергии электронного пучка вероятность ионизации при столкновении возрастает и возникают пики с большей интенсивностью. При дальнейшем росте энергии электронов большая ее часть передается образующемуся молекулярному иону. Она может быть настолько большой, что в ионе рвутся связи, и происходит фрагментация частицы. Ускоряющий потенциал бомбардирующего электрона, которого только-только хватает для начала фрагментации, называется потенциалом возникновения фрагментарного иона. Если энергия электрона достаточно высока, то в молекуле может происходить разрьш более чем одной связи. Следующая последовательность реакций описывает процессы с участием гипотетической молекулы В — С — О — Е, когда она бомбардируется электронами  [c.318]

    Благодаря статистическому характеру разветвленности число узлов в макромолекуле (при данной величине р) пропорционально ее молекулярной массе. Поскольку возникновение в данной макромолекуле разветвлений влечет за собой ускорение ее роста (растет одновременно несколько концов) и, соответственно, увеличение вероятности дальнейшего разветвления, процесс разветвленности приводит к расширению молекулярно-массового распределения. При этом наиболее высокомолекулярные фракции содержат наибольшее число ветвей. [c.25]

    Главными причинами катодной поляризации, т. е. отставания процесса ассимиляции электронов от поступления их на катодные участки, являются а) замедленность катодной реакции, которая приводит к возникновению перенапряжения водорода-, б) концентрационная поляризация по молекулярному водороду вследствие замедленности процесса отвода образующегося молекулярного водорода с поверхности металла, которая наблюдается до насыщения при-электродного слоя электролита водородом, когда становится возможным выделение его в виде пузырьков, в которых рнг = 1 атм. [c.251]

    Анализ уравнения (11) показывает, что величина х является важной и удобной характеристикой термодинамического качества растворителя. Действительно, из уравнения (11) следует, что при X < 0,5 АР1 < О (т. е. свободная энергия уменьшается при растворении) при любых значениях молекулярной массы и концентрации полимера. Это означает, что при % < 0,5 имеет место неограничен ное смешение полимера любой молекулярной массы с растворителем. При X > 0,5 Д/ 1 становится больше нуля при определенных значениях X и что указывает на возникновение двух, находящихся в равновесии, фаз разбавленный раствор — набухший полимер. [c.34]

    Более подробные теоретические и экспериментальные исследования показали, что коэффициент Ф несколько изменяется с изменением термодинамического качества растворителей, а также при возникновении разветвленности в молекулярных цепях [39, 17]. [c.35]

    На рис. 14-25 схематически изображены три зоны энергетических уровней, образованных Ь-, 25- и 2р-орбиталями простейшего металла, лития. Молекулярные Ь-орбитали полностью заполнены электронами, потому что в изолированных атомах лития 15-орбитали также заполнены. Следовательно, 15-электроны не принимают участия в химической связи. Они являются частью положительно заряженных атомных остовов (ионов), и их можно не принимать во внимание при дальнейшем обсуждении. Атомы лития имеют по одному валентному электрону на 25-орбитали. Если в кристалле лития 10 атомов, то взаимодействие 10 25-орбиталей приводит к возникновению зоны, состоящей из 10 делокализованных орбиталей. Как обычно, каждая из этих орбиталей способна принять до двух электронов, так что в пределах зоны может находиться 2 -10 электронов. Ясно, что в кристалле лития имеется ровно столько электронов, чтобы заполнить только нижнюю половину 25-зоны, как это показано на рис. 14-25. [c.625]

    Название науки — физическая химия — отражает как историю возникновения ее на стыке двух наук — физики и химии, так и в значительно большей мере то, что она широко использует теоретические и экспериментальные методы физики при исследовании химических явлений. Два теоретических метода физики давно и широко используются при решении основных задач физической химии. Термодинамический метод применяется для решения проблемы направленности процессов химического и фазового равновесия. Метод молекулярно-кинетической теории — при определении свойств систем, состоящих из множества частиц, таких, как газы, кристаллы или растворы. [c.6]

    При молекулярном переносе (ламинарный поток) наблюдается лишь продольный перенос количества энергии, а также массы вещества, в то время как в турбулентном потоке существует не только продольный перенос, но и поперечный, что и приводит к возникновению дополнительного касательного напряжения и соответственно дополни- [c.116]

    В. Пределы применимости феноменологических законов, определяемые турбулентностью. Другое ограничение применимости уравнений для потоков (4)—(6), содержащих молекулярные коэффициенты переноса Л, Й и т], обусловлено явлением турбулентности. Турбулентность в газах и жидкостях является результатом хаотического движения так называемых турбулентных вихрей, размер которых около нескольких процентов размера всей системы. Этот размер может быть порядка миллиметров в трубах теплообменника, сантиметров — в больн1их градирнях или даже метров — в атмосфере. В жидкостях и газах вихри возникают при больших скоростях течения, в трубах большого диаметра, позади препятствий и т. д. Критерием возникновения турбулентности служит критическое число Рейнольдса [c.72]

    Из ранних исследований, которые привели к возникновению понятия о пространственных препятствиях при реакциях, отметим здесь классические работы по реакционной способности первичных и вторичных аминов жирного, алицикличе-. ского и ароматического рядов и некоторых гетероциклических оснований [223]. Этими исследованиями был открыт обширный класс медленных молекулярных реакций второго порядка, которые идут замедленно, несмотря на малые энергии активации, вследствие аномально низких величии предэкспоненциальных множителей, что обусловлено большими пространственными препятствиями- при этих реакциях. [c.165]

    При полимеризации в формах вследствие низкой теплопроводности полимера отвод тепла реакции сильно затруднен. Это приводит к местным перегревам, образованию полимера низкого молекулярного веса и возникновению пузырей в изделиях. [c.44]

    Возможные причины перемешивания [99, 116] в промышленных аппаратах следующие неравномерность профиля скоростей потока возникновение противоположного основному потоку турбулентного переноса вещества перенос вещества в противоположном движению потока направления за счет молекулярной диффузии образование застойных зон байпасные и перекрестные токи в системе температурные градиенты и др. Теоретический расчет влияния каждого из этих эффектов на гидродинамику реального пОтока вызывает затруднения. Поэтому в последние годы большое внимание уделяется определению общего коэффициента перемешивания [77, 99, 258]. Основным экспериментальным методом исследования перемешивания является метод искусственного нарушения состава входного потока и исследование реакции системы на возмущение. Эти методы подробно описаны в ряде учебников и монографий [116, 118, 153]. [c.158]

    На первый взгляд может показаться, что протекание реакций по механизму молекулярной перегруппировки, т. е. в одну стадию, по крайней мере, для мономолекулярных реакций или реакций первого порядка (истинные мономоле-кулярные реакции всегда являются реакциями первого порядка в области достаточно высоких давлений), является более экономным или выгодным. Действительно, процесс перегруппировки связей, который состоит в разрыве одних и возникновении других связей, в пределах одной молекулы может происходить скомпенсированным путем, т. е. облегчаться за счет выгодных внутренних переходов, разрещен-ных квантовой химией. При этом для реакции может потребоваться меньшая энергия, чем энергия разрыва отдельных связей. Если бы эти.внутренне скомпенсированные переход, ды лежали в природе процесса разложения молекул органических соединений, то молекулярный механизм распада являлся бы единственным реальным путем распада этих веществ. [c.14]

    Теория, интерпретирующая прохмежуточные соединения при гетерогенных каталитических реакциях углеводородов как поверхностные л-комплексы, получила особенно большое распространение в последние двадцать лет. Теоретическим обоснованием я-комплексной адсорбции послужила работа Малликена [94], которая успешно объясняла явление молекулярного комплексообразо-вания. Возникновение теории л-адсорбированных промежуточных продуктов связано с изучением реакции дей-терообмена углеводородов на металлах VIII группы. Реакцию этана с дейтерием удалось объяснить с помощью промежуточных а-моно- и диадсорбированных частиц, образовавшихся в результате диссоциативной хемосорб-цни этана [95] (Х = Н или D)  [c.52]

    В результате возникновения межплоскостных связей (по оси с) раздвигаются плоскостные углеродные сетки на некоторое расстояние. При этом образуются дополнительные молекулярные поры, недоступные для проникания этилового-спирта, что выражается в снижении пикнометрической плотности кокса. [c.236]

    Лишь в редких случаях молекулы исходного вещества реагируют непосредственно. Примером такой непосредственной реакции может служить реакция распада Иодистого водорода. При столкновении двух молекул иодистого водорода, обладающих достаточной энергией и соответственно взаимно ориенти рованиых, происходит разрыв связей Н—J и возникновение новых связей между атомами водорода и иода с образованием молекулярного водорода и иода. Примером реакций, для которых известны все элементарные процессы, т. е все промежуточные химические реакции, могут служить реакции между парами щелочных металлов и галогенов (так называемые ре-акции в разреженном пламени, см. гл. IV, 8). [c.60]

    При рассмотрении схем распада алканов, основанных на представлении о молекулярном механизме, неизбежно встает вопрос о возникновении, пусть мимолетном, промежуточных продуктов типа свободных незаряженных (или заряженных) радикалов. Трудно представить, что разрыв углеродной цепи в некотором месте молекулы происходит идеально одновременно с миграцией атома Н к соседнему атому углерода, как это допускается [25]. Тем более трудно допустить одновременность процессов в том случае, когда миграция Н совершается к более отдаленному атому углерода (несмотря на быстроту передачи Н по цепи). Если акт миграции несколько запаздывает по сравнению с актом обрыва связи, то образование радикалов может стать реальностью. Строгая одновременность процессов в сложной молекуле вообще кажется маловероятной. По нашему мнению, распад алканов является многостадийным процессом, что совместимо с тем, что отдельные стадии могут следовать во времени очень быстро одна за другой. [c.24]

    Перекрывание 2р .-орбитали атома кислорода и ls-орбиталей диух атомов водорода приводит к возникновению молекулярных - и aJ P-орбиталей. Как видно из рис. 147, характер перекрывания 2s- и 2р -орбиталей кислорода одинаков. В результате образуются три молекулярные орбитали связываю-1ц.ая Oj , почти несвязывающая и разрыхляющая Орбиталь 2р , [c.312]

    I ых и свободных л-разрыхляющих молекулярных орбиталей. Как указывалось уанее (см. рис. 54), в молекуле бензола 2р -электроны шести атомов углерода (.бразуют нелокализоаанную л-связь. Согласно теории молекулярных орбиталей этому представлению отвечает возникновение из шести атомных 2р -србиталей шести молекулярных л-орбиталей, три иэ которых оказываются связывающими, три другие — разрыхляющими  [c.520]

    Вследствие затруднений с образованием новых кристаллических зародышей при повышенной перенасыщенности раствора роль центров кристаллизации принимают на себя вершины и ребра ранее возникших кристаллических образований, а также места на их гранях, оказавшиеся по какой-либо причине не блокированными поверхностно-активной примесью. На этих центрах Начинается быстрое нарастание кристаллизующегося вещества по схеме монокристаллического образования, которое продолжается до тех пор, пока в данном микроучастке раствора не снизится его пересыщенность, а поверхность этого монокристаллического новообразования не окажется снова блокированной поверхностноактивной примесью. Тогда нарастание образовавшегося таким путем монокристаллического элемента приостановится, а от его вершин и ребер (после возникновения в данном микроучастке раствора повышенной пересыщенности), как от новых центров кристаллизации, начнут расти (в сторону наиболее высокой концентрации раствора) новые монокристаллические образования с самостоятельными молекулярными кристаллическими решетками. [c.71]

    Антидетонационная способность (иначе — детонационная стойкость) пзопарафиновых углеводородов повышается с увеличением числа метильных групп в молекуле ароматических углеводородов — с увеличением молекулярного веса и разветвлением боковых цепей нафтеновых — с разветвлением боковых цепей. Детонационная стойкость олефинов возрастает с приближением двойной связи к центру молекулы. Нормальные парафиновые углеводороды тем больше способны вызывать детонацию, чем больше их молекулярный вес. Из этого можно сделать вывод, что наименьшей детонационной стойкостью обладают те углеводороды, которые легко окисляются кислородом воздуха. При окислении их образуются гидроперекиси. С повыгаением температуры в период сжатия рабочей смеси в цилиндре двигателя гидроперекиси столь быстро распадаются с бурным выделением тепла, что происходит воспламенение образующихся продуктов. Распад гидроперекисей сопровождается образованием промежуточных соединений, способствующих возникновению новых гидроперекисей. Таким образом, окисление топлива приобретает характер цепной реакции. [c.101]

    Переход электронов с атомных Ь-орбиталей на связывающую МО, приводящий к возникновению химической связи, сопровои<-дается выделением энергии. Напротив, переход электронов с атомных 15-орбнталей на разрыхляющую МО требует затраты энергии. Следовательно, энергия электронов на орбитали 15 ниже, а на орбитали 15 выше, чем на атомных 1з-орбиталях. Это соотно-щение энергий показано на рис. 45, па котором представлены как исходные 15-орбнтали двух атомов водорода, так и молекулярные орбитали 15 и Ь. Приближенно можно считать, что при переходе Ь -электропа на связывающую МО выделяется столько же энергии, сколько необходимо затратить для его перевода на разрыхляющую МО. [c.145]

    Она называется кривой эффективности ионизации. Если энергия электронов заметно ниже энергии ионизации, то никаких ионов не возникает. Если энергия электронов равна энергии ионизации, то появляется пик очень низкой интенсивности, поскольку для ионизации в этом случае необходимо, чтобы при столкновении вся энергия электрона передавалась молекуле, вероятность чего не очень высока. По мере увеличения энергии электронов вероятность передачи ими энергии, достаточной для ионизации молекулы, увеличивается. При этом интенсивность пика растет, пока кривая не достигнет насыщения. Хвост кривой при низких энергиях возникает потому, что энергии электронов в пучке различны. Таким образом, для определения энергии ионизации необходимо проэк-страполировать кривую (пунктирная линия на рис. 16.6). В литературе [21] имеется подробное описание различных способов экстраполяции кривой и возникающих при этом ощибок. Если наблюдаемый пик представляет собой пик молекулярного иона (е + КХ -+ КХ + 2е), то энергию ионизации молекулы можно определить путем экстраполяции кривой эффективности ионизации. Если пик принадлежит фрагменту, то экстраполяция кривой эффективности ионизации дает потенциал возникновения этого фрагмента. Например, если исследуемый пик является пиком фрагмента Е молекулы КХ, то потенциал его возникновения Ац. получается путем экстраполяции кривой эффективности ионизации для этого пика. Потенциал возникновения связан со следующими пара- [c.328]

    Энергетический кризис и постоянное внимание, уделяемое охране окружающей среды, вновь ставят на повестку дня проблему производства малосернистых топлив путем ожижения углей. В большинстве случаев процесс ожижения ведут при 400—500 °С в растворителе при зтом протекают реакции переноса водорода. Было высказано предположение [1], что первоначально в результате взаимодействия угля с молекулярным водородом идет реакция деалкилирования и образуются активные ненасыщенные продукты, которые затем либо стабилизируют (путем гидрирования), либо реполимеризуют. Если уголь подвергнуть пиролизу [2], то протекают реакции деполимеризации и диспропорционирования, ведущие к возникновению свободных радикалов. Найдено также [3],. что ожижение (или растворение) высоколетучего битуминозного угля в тетралине при 350—450 °С идет с участием реакции переноса водорода, подчиняющейся уравнению второго порядка, причем по мере ее протекания возрастает энергия активации процесса. Предполагается [4], что перенос водорода от тетралина к углю идет в соответствии со свободнорадикальным механизмом, включающим термическое расщепление молекул угля. [c.325]

    Вместе с тем, основываясь на результх1тах перечисленных работ, можно указать следующие возможные причины появления перемешивания в аппарате вытеснения 1) различие скоростей потока в разных точках сечения вследствие неоднородной или недостаточно эффективной турбулизации либо неравномерного заполнения аппарата контактным материалом 2) возникновение противоположных основному потоку турбулентных толчков вещества — турбулентной диффузии 3) перенос вещества в направлении, противоположном основному потоку, за счет молекулярной диффузии. [c.114]

    Во II группу входят методы, основанные на процессе взаимораство-римости нефти и вытесняющего реагента. Этот процесс вследствие изменения физических свойств жидкостей в зоне контакта, возникновения молекулярно-диффузионного массопереноса и некоторых других физических эффектов может обеспечить высокий коэффициент вытеснения. Взаиморастворимая система — это такая система, в которой несколько веществ (нефть, вытесняющий агент), находящихся первоначально в различных фазах, могут смешиваться в любых пропорциях с полной ликвидацией поверхности раздела между ними. Методы вытеснения со смешиванием целесообразны лишь при соблюдении неравенства [c.53]

    При малой кратности растворителя к сырью, когда вязкость раствора велика, даже при малой концентрации твердых углеводородов и медленном охлаждении образующиеся кристаллы невелики, так как передвижению молекул к центрам кристаллизации препятствует выделяющийся из раствора парафин. В результате сужается область, из которой молекулы твердых углеводородов поступают к первично образовавшимся зародышам, что вызывает возникновение новых центров кристаллизации, увеличение числа кристаллов и, в конечном счете, образование мелкодисперсных труднофильтруемых осадков. Слишком большое разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. При этом средняя длина диффузионного пути молекул настолько увеличивается, что даже при медленном охлаждении в начальный момент образуется слишком много центров кристаллизации, в результате чего конечные размеры кристаллов уменьшаются. Следовательно, и в этом случае эффективность процессов снижается. В работе [АТ] исследовалось влияние кратности растворителя на растворимость в нем нафтеновых и ароматических углеводородов (рис. 50). Повышение кратности растворителя приводит к увеличению растворимости в нем углеводородов, причем растворимость ароматических углеводородов, обладающих большими молекулярной поляризацией и дисперси- [c.146]

    Так как энергия электронов в атомах квантуется, то говорят, что в атомах существуют определенные ировни энергии (или энер гетиисскир г лпвнг У-электронов. Изучение молекулярных спектров приводит к выводу, что и в молекулах имеется набор дозволенных уровней энергии электронов (см. разд. 2.3). Уровни энергйи в атоме водорода представлены на рис. 1.4 , который объясняет также возникновение спектральных линий при переходе электрона с одного уровня энергии на другой. 1 [c.13]

    Но если принять, что состав продуктов обычного и полностью заторможенного крекинга одинаковый, то из представления о крекинге, как совокупности цепной и молекулярной реакций, следует, что различные механизмы превращения исходных веществ в одинаковых условиях могут реально давать одни и те же продукты. Кроме того, кинетика остаточной реакции молекулярной перегруппировки и ради-кально-цепной части крекинга совпадают по форме, хотя коэффициенты А я В приобретают различные значения. В последнем нет ничего удивительного, так как исследовате-, ли давно привыкли к такой ситуации в кинетике, при которой с данной суммарной скоростью превращения могут быть сопоставлены несколько механизмов. Однако всегда молчаливо предполагалось, что реальным является только один из виртуальных механизмов. Самое удивительное здесь состоит в том, что при возникновении определенных продуктов долж но учитывать сосуществование нескольких равноправных путей образования их из одних и тех же исходных веществ. Это означало бы, что при объяснении результатов некоторого химического превращения мы должны исходить из принципа суперпозиции механизмов. [c.43]


Смотреть страницы где упоминается термин Молекулярная возникновение: [c.330]    [c.595]    [c.211]    [c.72]    [c.157]    [c.193]    [c.283]    [c.638]    [c.94]   
Генетика человека Т.3 (1990) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

возникновение



© 2024 chem21.info Реклама на сайте