Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сопротивление раздиру

    Вулканизаты из бутадиен-стирольных каучуков значительно меньше сохраняют значения сопротивления разрыву, относительного удлинения и сопротивления раздиру при повышенных температурах (100°С) и характеризуются менее высокой эластичностью, более высокими механическими потерями и повышенным теплообразованием по сравнению с вулканизатами из натурального каучука, а также уступают им по сопротивлению многократным деформациям изгиба, растяжения, сжатия и разрастанию трещин и текучести. [c.266]


    Остаточное удлинение, % Сопротивление раздиру, кН/м 14 20 15 [c.265]

    Остаточное удлинение, % Сопротивление раздиру, к Н/м 20 22 21 23 19  [c.231]

    Термоэластопласты имеют высокие значения сопротивления разрыву, относительного удлинения, эластичности, сопротивления раздиру и стойкости к многократным деформациям, морозостойкости. Оптимальные физико-механические свойства достигаются в тех случаях, когда разность между температурами стеклования соответствующих блоков превышает 100°С. [c.284]

    Литиевый полиизопрен при 20°С обладает сопротивлением разрыву близким к прочности НК, но значительно уступает последнему при повышенных температурах (табл. I). От НК он отличается также меньшим сопротивлением раздиру, отсутствием клейкости, обладает несколько более высокой температурой стеклования (в среднем — 68 против —72°С для НК) и более низким коэффициентом морозостойкости. [c.206]

    Широко известные работы по прививке к полиизопрену ма-леинового ангидрида в растворе пока не доведены до промышленной разработки. С другой стороны, значительный интерес вызывает механохимическая прививка малеинового ангидрида [44, 45], реализация которой облегчается применением в промышленности для сушки при температуре свыше 150°С червячных прессов и возникающего отсюда совмещения стадий сушки и модификации в отсутствие мономера. При исследовании свойств модифицированного малеиновым ангидридом полиизопрена в одной из наиболее обстоятельных работ по физике и химии модификации [18] было констатировано улучшение когезионной прочности и динамических свойств вулканизатов и вместе с тем некоторое снижение сопротивления раздиру. Можно сделать вывод, что во многих отношениях эффект модификации не зависит от способа введения и природы функциональных групп (гидроксильная, карбоксильная, азотсодержащая) и характеризуется общими чертами физической картины изменения свойств. [c.238]

    Все же основная задача модификации диеновых полимеров — исследование путей синтеза эластомеров, прежде всего на основе полиизопрена, ни по одному из важнейших свойств (когезионная прочность, адгезия, эластичность, сопротивление раздиру и др.) не уступающих натуральному каучуку, а напротив, по некоторым из них превосходящих его, и выбор оптимального среди таких методов для промышленной реализации. [c.240]

    Остаточная деформация (после сжатия на 20% в течение 24 ч при 100 С), % Сопротивление раздиру, кН/м Эластичность по отскоку, % при 20°С при 100 С [c.314]

    Сопротивление раздиру, кН/м Эластичность по отскоку при 22 °С при 100 °С Твердость по ТМ-2 Сопротивление разрастанию трещин, тыс. циклов Коэффициент теплостойкости при 100 С [c.363]

    Остаточное удлинение, % при 20°С при 100 °С Остаточная деформация после старения в течение 72 ч, % при 100°С при 150°С Сопротивление раздиру, кН/м Эластичность по отскоку, % при 20 °С при 100°С Твердость по Шору Температура хрупкости, °С Коэффициент морозостойкости 0,15—0,20 0,18—0,23 при —15 С Степень набухания, ч. (масс.) в трансформаторном масле в течение 72 ч при 150 °С [c.393]


    Для иллюстрации общего комплекса свойств, получаемого при применении сложноэфирных каучуков, приведем данные по испытанию резин протекторного типа на основе БЭФ-10Э (табл. 2) [8]. Резина на основе БЭФ-10Э существенно превосходит обычные протекторные резины по напряжению при удлинении 300%, эластичности при 20°С, твердости, истираемости и особенно по сопротивлению старению и образованию трещин. Практически, старение в течение 48 ч приводило к улучшению свойств резины на основе БЭФ-10Э, главным образом сопротивления раздиру и механических показателей, при высоких температурах. [c.410]

    Оптимум вулканизации натурального каучука может быть также определен по сопротивлению раздиру и произведению упругости, которые в оптимуме достигают наибольшей величины. Кроме того, он может определяться по количеству хлороформного экстракта и набуханию, которые имеют минимальные значения при достижении оптимума. [c.74]

    Эластичность по отскоку, Твердость по Шору А Сопротивление раздиру, обычные вулканизаты высокопрочные вулканизаты Диэлектрическая мость при 20 С при 200 °С [c.491]

    Природа поперечных связей в эластомерах оказывает значительное влияние на их физико-механические свойства. Так, алло-фановые и биуретовые структуры придают полиуретанам сочетание высокой твердости и эластичности [56]. Уретановые связи характеризуются улучшенной термической стабильностью по сравнению с двумя предыдущими структурами. При вулканизации уретановых каучуков серой образуется лабильная сетка, способная к перестройке при воздействии напряжений. Серные вулканизаты, как правило, имеют высокие значения сопротивления раздиру [57]. Относительно прочные С—С-связи снижают у эластомеров остаточные деформации. [c.542]

    Для типичных литьевых, вальцуемых и термопластичных эластомеров характерен высокий уровень физико-механических свойств (табл. 8). Литьевые эластомеры остаются непревзойденными в условиях эксплуатации при высоких и низких температурах. Термоэластопласты имеют лучшее сопротивление раздиру по сравнению с вальцуемыми каучуками. [c.545]

    Сопротивление раздиру, кН/м Твердость, Шор А Эластичность по отскоку, % [c.546]

    При использовании в качестве удлинителя цепи 3,3 -дихлор-4,4 -диаминодифенилметана получают эластомеры с высоким сопротивлением раздиру, причем лучшие результаты достигаются в системах с отношением диамин преполимер близким к 1. Отчасти это объясняется возникновением большего числа водородных связей, увеличивающих когезионную прочность полимера, что, однако, сопровождается ростом потерь уже при первом цикле деформации полимочевин — сегментированных уретанов реализуется до 90% всех потерь на гистерезис. [c.546]

    Сопротивление раздиру, кгс см Сопротивление старению, 72 час при 100 Кп Ку [c.184]

    Типичные представители уретановых эластомеров имеют высокие напряжения при удлинении, сопротивление раздиру, стойкость к набуханию в различных средах, к действию окислителей и радиации. По износостойкости они превосходят известные в настоящее время полимерные материалы. Одной из характерных особенностей этих полимеров является сочетание высокой эластичности с широким диапазоном твердости от 10 по Шору А до 70 по Шору Д. Только в уретановых эластомерах достигаются высокая стойкость [c.19]

    Сопротивление раздиру является специфической характеристикой резины и определяется растяжением надрезанного образца специальной формы. Наибольшим сопротивлением раздиру обладают резины на основе полиуретанового каучука, наименьшим — резины на основе тиокаучука. Большинство резин имеют сопротивление раздиру 6-9 МПа. Определяют сопротивление раздиру по ГОСТ 262-93. [c.71]

    Эластичность по отскоку, как и сопротивление раздиру, является специфическим свойством резины и определяется посредством удара бойком маятника, падающего с установленной высоты, по испытуемому образцу. Под эластичностью понимают высоту, на которую поднимается обратно маятник после удара по образцу. [c.71]

    Сажа ке повышает прочности вулканизатов. Ненаполненные и сажевые резины обладают малым теплообразование.м и высоким сопротивлением раздиру, не уступая резинам из натурального каучука и значительно превосходя вулканизаты синтетических каучуков это, очевидно, тоже связано с особенностью пространственной сетки вулканизата, образованной окислами металлов . [c.109]

    Резины из тиокола, не содержащие наполнителей, обладают незначительным пределом прочности при растяжении, сажевые резины имеют более высокий предел прочности при растяжении — 40—80 кгс см и относительное удлинение 250—400% при относительно малой эластичности по отскоку, равной 20%. Резины из тиокола значительно уступают резинам из натурального и синтетических каучуков по сопротивлению раздиру и истиранию. [c.112]

    Вполне обоснованный выбор именно этих эластомеров [12] как основы производства шин и резинотехнических изделий связан с ценным комплексом свойств полиизопрена и полибутаднена и их композиций хорошими технологическими свойствами сырых резиновых смесей, отличными упруго-гистерезисными и прочностными свойствами, высоким сопротивлением раздиру и износу, тем-пературостойкостью, низкой температурой стеклования и др. [c.225]

    Модифицированный изопреновый каучук уступает НК и СКИ-3 по сопротивлению раздиру и усталостной выносливости. Применение специальной сероускорительной группы позволяет уменьшить или устранить это различие. Вулканизаты смесей серийного и модифицированного полиизопрена имеют близкие значения сопротивления раздиру. [c.233]


    БНК, модифицированные поливинилхлоридом, различаются по соотношению БНК. и ПВХ, типу БНК, способу полимеризации, вязкости по Муни. Выпускаются две группы каучуков 70% БНК+ 30% ПВХ (главным образом) и 50% БНК+ 50% ПВХ. Эти каучуки легко перерабатываются на обычном оборудовании, резиновые смеси на их основе хорошо шприцуются, каландруются, формуются, льются. Основным преимуществом БНК, модифицированных ПВХ, является их исключительная погодо-, озоностой-кость, а также высокое сопротивление раздиру, высокая стойкость к тепловому старению и несколько большая стойкость к агрессивным средам. Кроме того, резины из этого каучука имеют высокую огнестойкость. Для обеспечения стойкости каучуков с ПВХ к тепловому старению в них вводят обычные неокрашиваюшие антиоксиданты для БНК и специальные для ПВХ. Эти каучуки выпускают обычно в виде гранул. [c.365]

    Испытание каучука БНЭФ-26-7И в сравнении с СКН-26М показало [7, 9], что резины на основе БНЭФ (табл. 3) имеют более высокие твердость, напряжение при удлинении 300%, сопротивление раздиру, разрастанию трещин, старению и прочностные показатели при 150 °С, а также озоностойкость. Коэффициент эластического восстановления при —25°С, температуростойкость, сопротивление раздиру, истиранию и эластичность по отскоку зависят от используемой системы ковалентной вулканизации и могут быть существенно улучшены при введении в нее диметилглиоксима. [c.410]

    Полимердиол Температура плавления, С Молекулярная масса полиэфира Сопротивле-иие а рыву. Сопротивление раздиру, кН/м [c.535]

    Полимер Молеку- лярная масса полиэфира Напряжение при Удлинении 300%, МПа Сопротивление j pHBy, Относительное удлинение, % Сопротивление раздиру, кН/м Твердость по Шору А [c.544]

    Остаточное у ликение, % Остаточная деформация после сжатия на 20% после выдержки при 100 С, % в течение 24 ч в течение 72 ч Эластичность по отскоку, % при 20° С при 100 С Твердость по Шору Сопротивление раздиру, кН/м [c.583]

    Сополимеры бутадиена с 15—25% 2-метил-5-винилпиридина также представляют собой весьма ценные синтетические каучуки. Резины на их основе превосходят бутадиен-стирольные резины по прочности при переменном изгибе и прн растяжении. Особенно высоки показатели резин на основе бутадиен-метилвинилпиридиио-вых каучуков при испытании их на разрыв по надрезу (сопротивление раздиру). [c.515]

    В случае гладкой поверхности появление волн отделения приводит к износу полимера посредством скатывания его поверхностного слоя, тогда как в случае шероховатой поверхности имеет место преимущественно абразивный износ [13.5]. В случае гистере-зисного механизма внешнего трения (т. е. при наличии механических потерь) при деформации шероховатостей наблюдается усталостный износ полимеров. Следует отметить, что последний вид износа не является интенсивным как абразивный и изделие из полимера сохраняет работоспособность в течение длительного времени. Абразивный износ является весьма интенсивным, и полимер быстро теряет свою работоспособность. Когда полимер перемещается по грубой шероховатой поверхности, то адгезия и гистерезис приводят соответственно к абразивному и усталостному износу. Для эластомеров с повышенными твердостью и сопротивлением раздиру волны отделения и износ посредством скатывания не имеют места. На температурных и временных зависимостях максимумы силы трения соответствуют минимумам износа (или истирания) полимеров. [c.362]

    Изучен характер в. шяния продуктов измельчения варочных камер и вулканизационных диафрагм в широком интервале дозировок на свойства протекторных и диа-фрагменных резин соответственно. Показано, что увеличение дозировки измельченных отходов сопровождается снижением условных напряжений, условной прочности при растяжении, сопротивления раздиру вулканизатов. Корректировкой содержания вулканизующих агентов можно несколько компенсировать падения модуля и прочности, но при содержании вторичных продуктов более 20 мае. ч. этот метод не позволяет сохранить указанные свойства на нормируемом уровне. Для протекторных резин характерно снижение усталостной выносливости в режиме постоянства амплитуды дефор-ма1щи, повышение относительного гистерезиса и уменьшение истираемости. Диафраг-менные резины, содержащие продукт измельчения диафрагм, отличаются повышенной усталостной выносливостью до и после старения, по с гойкости к старению не уступают серийным резинам. После корректировки состава вулканиз>тощей группы преимущества резин с продуктами переработки сохраняются. Показателями же, более серьезно лимитирующими содержание вторичных резин, являются технологические свойства вязкость, пластичность, качество поверхности невулканизованных заготовок, прочность стыков. С учетом этих ограничений допустимое содержание продукта измельчения варочных камер в протекторных резинах составляет 5-10 мае. ч. на 100 мае. ч. каучука, а продукта измельчения диафрагм в диафрагменных резинах - до 20 мае. ч. [c.6]

    Вулканизаты ненаполненных смесей на основе наирита обладают прочь остью около 220—250 кгс1см . Наполнители, как правило, не повышают прочности вулканизатов, но увеличивают модули и понижают относительное удлинение. Вулканизаты имеют хорошее сопротивление раздиру и истиранию, высокое сопротивление тепловому старению, а также высокий показатель эласти1Ч-ности по отскоку, близкий к показателю эластичности резин из натурального каучука. [c.111]


Смотреть страницы где упоминается термин Сопротивление раздиру: [c.206]    [c.207]    [c.281]    [c.326]    [c.351]    [c.365]    [c.408]    [c.409]    [c.449]    [c.450]    [c.22]    [c.304]    [c.7]    [c.114]    [c.114]   
Смотреть главы в:

Полимерные пленки -> Сопротивление раздиру

Лабораторный практикум по технологии резины  -> Сопротивление раздиру


Технология резины (1967) -- [ c.0 ]

Технология синтетических каучуков (1987) -- [ c.337 ]

Структура и прочность полимеров Издание третье (1978) -- [ c.59 ]

Справочник резинщика (1971) -- [ c.567 ]

Истирание резин (1975) -- [ c.76 , c.78 , c.91 ]

Основы переработки пластмасс (1985) -- [ c.360 ]




ПОИСК





Смотрите так же термины и статьи:

Испытание сопротивления резины раздиру

Методика определения сопротивления резин раздиру

Определение сопротивления резины раздиру

Практическая работа 18. Определение сопротивления раздиру

Сопротивление истиранию раздиру

Сопротивление раздиру и разрыву

Сопротивление резин раздиру



© 2024 chem21.info Реклама на сайте