Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

посредством скатывания

    При изучении особенностей истирания резины нри трении по относительно гладким поверхностям удалось установить новый специфичный для высокоэластичных материалов механизм истирания, названный износом посредством скатывания [5, с. 440 7, с. 21 8, с. 14 30, 31, 36]. Этот вид износа реализуется при относительно высоком значении коэффициента трения между резиной и истирающей поверхностью. [c.11]


    Эффективное повышение износостойкости резиновых изделий не может быть достигнуто без выяснения механизма износа знание его позволяет установить зависимость износостойкости резины от ее свойств и, таким образом, прогнозировать работоспособность изделий в условиях эксплуатации, а также разрабатывать методы определения износостойкости и принципы построения рецептур резин. Износ резин происходит по различным механизмам в настоящее время сложились представления о трех механизмах износа резин, соответствующих некоторым идеализированным предельным режимам абразивному, усталостному и механизму износа посредством скатывания [2, с. 159 5, с. 435 7, с. 9 14 30—32]. [c.7]

    Истирание посредством скатывания может происходить лишь при определенном сочетании внешних условий и свойств истираемой резины. Очевидно, что подобный характер истирания более вероятен для резин с малым сопротивлением раздиру. Так как прочностные свойства резины весьма существенно зависят от температуры, разогрев поверхностного слоя за счет трения в скользящем контакте также может оказать большое влияние. В определенных условиях этот разогрев приводит к осмолению поверхностного слоя резины и появлению клейкости, резко повышающей эффективное трение. [c.12]

    Рассмотренная в общих чертах картина истирания посредством скатывания может быть проанализирована более детально. Был проведен [36] приближенно-количественный анализ истирания резины посредством скатывания для идеализированного случая, исходя из предположения, что все контакты между резиной и контртелом (твердым и гладким) осуществляются через скатки , а износ происходит только посредством скатывания . [c.12]

    Несмотря на то что при выводе зависимости (1.6) был сделан ряд допущений, она показывает наличие связи между интенсивностью истирания посредством скатывания и упруго-релаксационными и прочностными свойствами резины. [c.13]

    Используя эту зависимость [36], можно установить критические условия реализации истирания посредством скатывания . [c.13]

    Представления о механизме истирания резин посредством скатывания были экспериментально подтверждены с помощью прибора, в котором трение резины осуществлялось по гладкому плексигласу. Явления, протекающие в зоне контакта, [c.13]

    Истирание посредством скатывания представляет особый интерес, так как этот вид истирания реализуется только для высокоэластичных материалов и в принципе не может наблюдаться при трении твердых тел. [c.13]


    Пока еще трудно сделать вывод об относительной роли истирания посредством скатывания в различных условиях эксплуатации [c.13]

Рис. 1.6. Микрофотография поверхности резины после истирания посредством скатывания (Х15). Рис. 1.6. Микрофотография <a href="/info/1335919">поверхности резины после истирания</a> посредством скатывания (Х15).
    Рассмотренные выше два вида износа — абразивный и посредством скатывания — являются высокоинтенсивными видами износа если они реализуются, то изделия оказываются недолговечными. [c.14]

    В зависимости от условий эксплуатации износ шин, так же как износ других резиновых изделий, протекает по трем рассмотренным ранее механизмам абразивному, усталостному и посредством скатывания [78]. В случае эксплуатации шин на усовершенствованных [c.22]

    Интенсивность истирания и гистерезис. В уравнениях, приведенных в гл. 1, гистерезис непосредственно учитывается только в уравнении (1.6), описывающем износ посредством скатывания . В данном случае износостойкость повышается с увеличением гистерезиса, так как при этом меньшая доля накопленной упругой деформации переходит в работу истирания в зоне скользящего контакта [c.29]

    Ландела — Ферри д.ля исследования истирания резин значительно упрощает технику экспериментов в широком скоростном и температурном диапазонах. Истираемость имеет высокие значения в области повышенных температур [96]. По мере снижения температуры истираемость уменьшается до минимума, а затем снова повышается при приближении температуры испытания к температуре стеклования (рис. 3.2). Такой сложный характер зависимости истираемости от температуры обусловлен, по-видимому, тем, что при этом изменяется механизм износа (рис. 3.3). При низких температурах (—45 °С) вследствие увеличения жесткости резины происходит абразивный износ, а в условии повышенных температур — износ посредством скатывания [8]. Рост интенсивности истирания с повышением температуры от комнатной до 100 °С и более высокой отмечался в ряде работ [7, с. 192 110, 111, 121]. [c.33]

    Следует также отметить, что при сжатии поверхностного слоя в случае отрицательного проскальзывания в контакте создаются благоприятные условия для образования складки, необходимой для реализации процесса истирания посредством скатывания . Наличие четко выраженного рисунка истирания на поверхности резины (рис. 3.8, а), в котором гребни расположены перпендикулярно направлению движения, подтверждает, [c.39]

    При положительном проскальзывании в зоне контакта создаются сравнительно большие деформации растяжения поверхностного слоя резинового образца [9, с. 176]. Интенсивность истирания образцов достаточно велика даже в отсутствие дополнительных деформаций растяжения. С увеличением деформации интенсивность истирания уменьшается. Наблюдаемое явление можно объяснить по крайней мере двумя причинами уменьшением доли истирания посредством скатывания при увеличении деформации растяжения образца (затрудняется образование поверхностной складки) и понижением доли абразивного износа в результате повышения твердости резины при ее растяжении [123—125] (табл. 3.2). [c.39]

    Примечание, Прочерки означают, что на поверхности образца не образуется характерный для истирания посредством скатывания рисунок. [c.67]

    Одним из важнейших свойств резины, оказывающим существенное влияние на соотношение отдельных видов износа и на интенсивность истирания, является ее жесткость (твердость, напряжение при заданном удлинении /30о, модуль упругости, динамический модуль и др.) [5, с. 213—237]. Особенно велика роль жесткости резины при износе посредством скатывания . При определенном значении твердости или /30 о интенсивность истирания на гладком рифленом металлическом диске понижается на порядок (см. рис. 2.2), исчезает характерный рисунок истирания, что указывает на переход от износа посредством скатывания к усталостному износу. Как показано в гл. 1 и 2, при усталостном износе повышение жесткости резин приводит к снижению износостойкости. При высокой жесткости резин в случае испытания на шероховатой поверхности с острыми выступами может наблюдаться переход от преобладающего усталостного к преобладающему абразивному износу. [c.69]

    Вследствие противоположного влияния жесткости резин на их износостойкость при усталостном износе и износе посредством скатывания зависимость интенсивности истирания шин от жесткости протекторной резины должна иметь немонотонный характер, т. е. должно наблюдаться оптимальное значение твердости, модуля упругости, напряжения при заданном удлинении (/300) протекторных резин, при котором интенсивность износа шин минимальна. Следует также учитывать влияние жесткости резин на работу трения в зоне контакта шины с дорогой. Работа трения, определяемая деформациями протектора, уменьшается с увеличением жесткости [c.69]


    Для обеспечения высокой износостойкости истирание резин должно происходить преимущественно по усталостному механизму, а абразивный износ и износ посредством скатывания должны быть сведены к минимуму. Для этого необходимо обеспечить возможно более высокие прочностные свойства протекторных резин. Коэффициент поверхностного трения резин должен быть меньше некоторых критических значений. Значения коэффициентов трения, при которых наблюдается переход от высокоинтенсивных видов износа к усталостному, тем меньше, чем больше нормальная нагрузка, относительное проскальзывание и ниже прочностные свойства резины. В узлах трения, где не требуется сцепление резины с контртелом (например, в различных уплотнительных деталях, подшипниках, пескоструйных аппаратах и др.), следует стремиться к минимальному коэффициенту трения. Уменьшение коэффициента трения приводит к снижению температуры в зоне контакта резинового изделия с контртелом, что особенно важно для работы резиновых уплотнительных деталей в быстровращающихся элементах машин. [c.72]

    При истирании резин на основе НК и БСК в значительной степени реализуется износ посредством скатывания (см. рис. 5.10), что-связано с высоким коэффициентом трения этих резин и со значительным понижением прочностных свойств поверхностного слоя при многократных деформациях. [c.82]

    Повышение нормальной нагрузки и степени проскальзывания вызывает увеличение сдвиговых напряжений. В случае резин на основе НК и БСК это приводит к повышению доли износа посредством скатывания и, следовательно, к резкому увеличению абсолютной интенсивности истирания. Для резин на основе ПБ, истирание которых протекает в основном по усталостному механизму, [c.84]

    Высокие прочностные свойства и динамический модуль, а также низкий коэффициент трения обусловливают повышенное сопротивление абразивному износу и износу посредством скатывания (см. табл. 5.7). С увеличением содержания нитрила акриловой кислоты износостойкость резин повышается. Резины на основе СКН характеризуются повышенной износостойкостью при трении по металлу при высоких температурах в присутствии масел и смазок, т. е. тогда, когда они используются как уплотнители для быстро вращаюш,ихся деталей машин [77]. [c.93]

    Однако по мере ужесточения условий эксплуатации (рис. 5.18, табл. 5.9) [263] относительная износостойкость резин, содержащих высокоструктурные сажи, возрастает это можно объяснить относительно меньшим увеличением доли износа посредством скатывания более твердых резин, наполненных высокоструктурными сажами, чем резин, наполненных сажами нормальной структуры. [c.100]

    Наличие максимума износостойкости может быть объяснено, исходя из представлений о различных видах износа при эксплуатации шин. В области малой концентрации сажи повышение ее содержания оказывает положительное влияние на износостойкость, так как вследствие увеличения твердости и прочностных свойств резин понижается доля износа посредством скатывания . При дальнейшем увеличении содержания сажи резко возрастает твердость резин, [c.102]

    Для резин на основе СКД в значительно меньшей степени реализуется износ посредством скатывания . Уже при сравнительно невысоких значениях /зоо износ посредством скатывания практически не реализуется (рис. 5.20). В то же время увеличение степени вулканизации вызывает резкое уменьшение износостойкости в случае усталостного износа и скалывания . Таким образом, следует ожидать, что оптимальное значение /зоо для резин, содержащих СКД, будет ниже, чем для резин из НК это и подтверждается данными дорожных испытаний шин (рис. 5.21). [c.106]

    Важно отметить, что независимо от типа поперечных связей с увеличением степени вулканизации наблюдается повышение усталостного износа и снижение износа посредством скатывания . Для резин с прочными С — С-связями уменьшение износостойкости с увеличением степени вулканизации проявляется более резко. Очевидно, для этих. вулканизатов оптимальное значение степени вулканизации должно быть ниже, чем дЛя вулканизатов с менее прочными связями. Износостойкость смоляных вулканизатов по мере повышения напряжения при 300%-ном удлинении сохраняется лучше, чем износостойкость других вулканизатов, что, очевидно, связано с повышенной неравновесной составляюш ей напряжения смоляных резин [277]. [c.108]

    Истирание резин и полимеров представляет собой сложное явление, зависящее от комбинации механических, механохимических и термохимических процессов. Для изучения механизма этого сложного явления прежде всего необходимо выделить и исследовать более простые закономерности и затем создать общую картину явления износа [1]. Все больше внимания уделяется причинам износа, способам его измерения, факторам, влияющим на его интенсивность, и приемам ее уменьшения. Как следует из молекулярно-кинетических теорий адгезии, рассмотренных в гл. 8, механизм образования связей, их деформация и разрыв представляют собой диссипативный и, следовательно, необратимый процесс. Адгезия в свою очередь вызывает некоторое физическое разрушение поверхностей при трении. Это относится в полной мере к трению эластомеров по жесткому грубому контртелу. Однако имеются разные точки зрения относительно трения по гладкому контртелу [2]. Не следует считать, что истирание происходит только на грубых поверхностях, так как трение возникает как на грубых, так и на гладких поверхностях. Советские исследователи [1] показали, что при трении по гладким поверхностям возникает новый механизм истирания — посредством скатывания. Очень трудно определить истирание резины в условиях скольжения с малыми скоростями по гладкой поверхности. Однако можно предположить, что истирание сопровождает адгезию во всех случаях и на практике следует выбирать оптимальные условия для обеспечения максимальной адгезии и минимального износа. [c.224]

    Износ посредством скатывания. Поверхность контртела гладкая, неровности поверхности эластомера сворачиваются в скатку, которая затем отрывается от него [1]. [c.227]

    Абразивный и усталостный механизмы износа проявляются на грубых поверхностях, в то время как износ посредством скатывания — на гладких поверхностях с высоким коэффициентом трения. Абразивный износ и износ посредством скатывания являются высокоинтенсивными, а усталостный — наименее интенсивным. Последний осуществляется при низком коэффициенте трения между эластомером н контртелом. Он является наиболее распространенным в реальных узлах трения. Эксперименты показали, что резины с высоким сопротивлением износу имеют относительно низкий коэффициент трения. Сопротивление износу резин с высоким коэффициентом трения может быть повышено лишь при снижении коэффициента трения, например, путем талькирования поверхности резины или введения в нее выпотевающих смазок (таких как силиконовая жидкость). [c.227]

    Теория износа посредством скатывания [c.234]

    Теория образования скаток не является еще полностью разработанной и во всем достоверной. Однако весьма возможно, что в определенных условиях механизм износа посредством скатывания преобладает. Основное условие его возникновения может быть математически выражено следующим образом [c.236]

    В случае гладкой поверхности появление волн отделения приводит к износу полимера посредством скатывания его поверхностного слоя, тогда как в случае шероховатой поверхности имеет место преимущественно абразивный износ [13.5]. В случае гистере-зисного механизма внешнего трения (т. е. при наличии механических потерь) при деформации шероховатостей наблюдается усталостный износ полимеров. Следует отметить, что последний вид износа не является интенсивным как абразивный и изделие из полимера сохраняет работоспособность в течение длительного времени. Абразивный износ является весьма интенсивным, и полимер быстро теряет свою работоспособность. Когда полимер перемещается по грубой шероховатой поверхности, то адгезия и гистерезис приводят соответственно к абразивному и усталостному износу. Для эластомеров с повышенными твердостью и сопротивлением раздиру волны отделения и износ посредством скатывания не имеют места. На температурных и временных зависимостях максимумы силы трения соответствуют минимумам износа (или истирания) полимеров. [c.362]

    На очень плохих дорогах (группа В, карьеры) износ возрастает во много раз. Например, для шины 12.00-20 с, рисунком протектора повышенной проходимости износ составляет 0,7—0,8 и 0,8—1,8 мм /1000 км при эксплуатации шин на строительстве ГЭС и на рудниках металлургического комбината. Увеличение износа с ухудшением дорог можно объяснить, вероятно, увеличением абразивности поверхности и нестабильности нагрузки. Абразивность дорожного покрытия на дорогах группы В значительно выше, чем на дорогах группы А. Повышение абразивности дороги от группы А к труппе В вызывает изменение механизма износа резины протектора. На дорогах группы А реализуется, главным образом, усталостный износ, а на дорогах группы Б, и особенно группы В и в карьерах, значительно увеличивается доля высокоинтенсивных видов износа резины — абразивного и посредством скатывания . Об этом свидетельствует вид поверхности износа. На дорогах группы А протектор имеет гладкую поверхность и выступы рисунка не деформированы. При испытании на дорогах группы Б на поверхности шины возникают многочисленные порезы и углубления, указывающие на вырывы сравнительно крупных частиц резины на разбитых дорогах группы В с поверхности беговой дорожки вырываютоя и выкрашиваются крупные куски резины, на ней образуются многочисленные порезы. [c.172]

    Сложнонапряженное состояние характерно для процесса и с т и р а н и я (износа) Р., возникающего как вследствие адгезионного взаимодействия на поверхностях контакта трущихся тел, так и из-за неровностей поверхности твердого контртела. Коэфф. трения х (отношение тангенциальных F и нормальных Q нагрузок в контакте) зависит от Q и скорости V скольжения или качения при трении. Для описания температурноскоростной зависимости [х применим метод приведенных переменных (рис. 5). Различают три вида износа Р., легко определяемых визуально 1) абразивный — путем царапания Р. по твердым выступам шероховатой поверхности абразива 2) усталостный — при многократной деформации, механич. потерях и теплообразовании в Р. во время скольжения (качения) на неровностях поверхности твердого контртела 3) износ посредством скатывания, т. е. путем последовательного отдирания тонкого поверхностного слоя Р. (см. [c.161]

    Интенсивность истирания и модуль упругости (жесткость, твердость). Как следует из формул (1.2), (1.6), (1.8), (1-9), (1.17), для отдельных механизмов износа интенсивность истирания сложным образом зависит от модуля упругости резин. Для абразивного износа с ростом модуля упругости резин интенсивность истирания уменьшается. Это связано с уменьшением сдвиговых напряжений вследствие снижения коэффициента трения и глубины внедрения выступов шероховатой опоры в резину. В условиях износа посредством скатывания интенсивность истирания с повышением модуля упругости понижается, так как уменьшается вероятность образования первичной складки резины. Увеличение интенсивности истирания с увеличением модуля упругости резин наблюдается при усталостном износе, а также при. износе незакрепленным абразивом [60, 63]. Б этих условиях с повышением модуля упругости возрастают контактные напряжения в резине, в результате чего увеличивается интенсивность истирания [21, 22]. На рис. 2.2 показано влияние твердости резин из СКС-30 АМ на истираемость по абразивной шкурке и рифленой металлической поверхности [103]. (Повышение твердости достигалось изменением содержания серы и ускорителя вулканизации.) Повышение твердости резины приводит к увеличению истираемости при усталостном износе (кривая 1) и понижению этого показателя в случае абразивного износа (кривая 2). Аналогичный характер изменения интенсивности истирания от условного напряжения нри 200% удлинения наблюдал Г. Вестлининг [104]. Сложный характер зависимости износа изделий от модуля упругости резины проявляется [c.27]

    В последнем случае процесс локализуется в тонком поверхностном слое, а не во всем объеме материала и значительно осложняется влиянием окружающей среды. Поэтому правильнее сопоставлять износостойкость материала с фрикционно-контактной усталостью, т. е. с усталостью материала при многократном деформировании его поверхностного слоя неровностями твердого контртела. Исследования фрикционно-контактной усталости, проведенные с помощью приборов, в которых жесткий сферический индентор, имитирующий выстун шероховатой поверхности, многократно деформировал поверхность резины [7, с. 9 108], показали, что объемная и контактная усталость подчиняются аналогичным закономерностям. Значения коэффициентов динамической выносливости резин в обоих случаях близки. Применимость формулы (1.7) проверена для контактной усталости до амплитудных значений напряжений, близких к разрывным. Сопоставление кривых объемной и фрикционно-контактной усталости дает основание предполагать, что разрушающим в последнем случае является напряжение растяжения поверхностного слоя, вызванное силой трения. Стойкость резины к повторным нагружениям оказывает влияние на реализацию других видов износа. Показано [7, с. 9 14 56], что рисунок истирания появляется не сразу, а только после определенного числа циклов повторных деформаций. С улучшением усталостных свойств реализация износа посредством скатывания начинается позднее, что приводит к повышению износостойкости резин. [c.28]

    Первичным актом истирания, определяющим интенсивность абразивного износа и износа посредством скатывания , является возникновение на поверхности резины раздиров — при шероховатой истирающей поверхности или трещин — при гладкой поверхности контртела (см. гл. 1). Раздиры и трещины возникают тогда, когда работа (мощность) трения превышает энергию разрыва (раздира) поверхностного слоя резины. Таким образом, прочностные свойства резины оказывают существенное влияние на соотношение отдельных видов износа. Можно предполагать, что для каждой резины существует определенное критическое значение мощности трения Искрит- При значениях мощности трения W < Искрит происходит преимущественно усталостный износ, а при значениях W ]> Искрит преимущественно износ посредством скатывания (на сравнительно гладких поверхностях) и абразивный износ (на шероховатых поверхностях с острыми выступами). [c.66]

    Теории абразивного и усталостного износа исходят из необходимости определенной макрошероховатости жесткого контртела. На гладких поверхностях, однако, может проявляться иной механизм износа [1], специфичный лишь для высокоэластических материалов и названный износом посредством скатывания . Он осуществляется при высоких значениях коэффициента трения между резиной и контртелом. В этих условиях большие деформации, возникающие до начала скольжения эластомера, приводят в конечном счете к его разрыву. Последний происходит при максимальной деформации поверхностного слоя в направлении, перпендикулярном направлению скольжения. Локальное направление надрыва зависит от сложного комплекса явлений характера местных деформаций, молекулярной неоднородности структуры эластомера и др. Маловероятно, чтобы такой надрыв приводил бы к немедленному отделению частицы материала от поверхностного слоя. Более очевидным является с.чучай [c.234]


Смотреть страницы где упоминается термин посредством скатывания: [c.97]    [c.11]    [c.14]    [c.23]    [c.37]    [c.66]    [c.67]    [c.103]    [c.235]   
Истирание резин (1975) -- [ c.11 , c.28 , c.33 , c.66 , c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Износ посредством скатывания

Истирание резины посредством скатывания

Теория износа посредством скатывания

посредством скатывания при эксплуатации изделий



© 2025 chem21.info Реклама на сайте