Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Раствор замещения

    Твердые растворы замещения образуются в том случае, если кристаллические решетки компонентов однотипны и размеры частиц компонентов близки. Необходимым условием образования твердых растворов является также и известная близость химических свойств веществ (одинаковый тип химической связи). Так, в кристалле КС1 ионы хлора могут быть постепенно замещены ионами брома, т. е. можно осуществить практически непрерывный переход вещества от состава КС1 к составу КВг без заметного изменения устойчивости кристаллической решетки. Свойства образующихся твердых растворов непрерывно меняются от КС1 к КВг. Ниже приведены примеры ионных, атомных, молекулярных и металлических твердых растворов замещения. [c.134]


    При кристаллизации твердых растворов другого типа атомы и ионы растворимого вещества располагаются в узлах кристаллической решетки вместо атомов или ионов растворителя. Получающиеся системы называются твердыми растворами замещения. [c.402]

    Твердые растворы делятся на растворы замещения, внедрения и вычитания. Наиболее распространенными являются твердые растворы замещения, которые образуются при сохранении структуры кристаллической решетки растворителя. При этом атомы, ионы или молекулы одного вещества замещают в узлах кристаллической решетки частицы другого вещества. Образование таких растворов возможно при условии, если оба компонента близки по кристаллохимическим свойствам и размерам частиц. По приближенному правилу В. Юм-Розери твердые растворы замещения образуются тогда, когда размеры частиц двух компонентов отличаются не более чем на 14—15%. Образование твердых растворов замещения не связано с большими напряжениями в кристаллической решетке, в связи с чем устойчивыми оказываются твердые растворы любого состава. При образовании твердых растворов замещения сохраняются неизменными тип решетки и число атомов или ионов в кристаллической ячейке, но изменяются ее объем и плотность. [c.338]

    Если электроположительные элементы взаимодействующих соединений способны образовывать близкие по строению, размеру и устойчивости структурные единицы (комплексы), то получаются твердые растворы замещения  [c.259]

    Сплавы. Металлические сплавы обычно состоят из кристалликов различных компонентов, причем каждый вид кристалликов содержит преимущественно только один из компонентов. Однако в значительном ряде случаев обнаруживается присутствие в кристаллах данного вида не одного, а, например, двух из компонентов сплава. Это бывает в тех случаях, когда компоненты или-химически взаимодействуют между собой, образуя металлические соединения, или обладают способностью взаимно растворяться не только в жидком, но и в кристаллическом состоянии, образуя так называемые твердые растворы (или смешанные кристаллы). В последнем случае атомы одного металла внедряются в решетку другого или замещают его атомы своими, образуя соответственно твердые растворы внедрения или твердые растворы замещения. [c.138]

    Характер взаимодействия титана и его аналогов с металлами зависит от положения последних в периодической системе. Так, с близкими к нему по свойствам хромом и ванадием титан образует непрерывный ряд твердых растворов замещения  [c.532]

    Образование твердых растворов замещения, или смешанных кристаллов, возможно при соблюдении следующих условий  [c.170]


    Твердые растворы замещения образуются путем частичного замещения ато,мов металла-растворителя атомами растворяемого металла. Такой процесс может происходить без возникновения в атоме значительных напряжений только в тех случаях, когда по размерам атомы не различаются значительно между собой. Элементы должны быть достаточно близкими по химическим свойствам, и лучше всего, если они будут принадлежать одной подгруппе периодической системы. Известны и другие ограничения. О твердых растворах см. 131 и 133. [c.139]

    Создание новых катализаторов оказалось возможным в результате изучения закономерностей формирования и разрушения фосфатных катализаторов [37—40]. После осаждения компонентов и формования в гранулы эти катализаторы представляют собой рентгеноаморфную массу. В процессе активационной разработки происходит резкое изменение их удельной поверхности, укрупнение пор. Фазовый состав при этом практически не изменяется, и катализаторы представляют собой монофазную систему типа твердого раствора замещения. Механическая прочность даже при мягких режимах активационной разработки снижается на порядок. Использование специальных приемов позволило устранить факторы, снижающие прочность гранул, а введение добавок и новый способ приготовления обеспечили высокую активность катализатора. [c.660]

    Процесс упорядочивания сводится к такому перераспределению атомов водорода, при котором возникает определенная периодичность, т. е. дальний порядок в их расположении в основной матрице. Это сопровождается, в отличие от упорядоченных фаз растворов замещения, сильным изменением периода кристаллической решетки основной матрицы с ростом концентрации атомов внедрения. Принято считать [22], что искажение решетки носит упругий характер, а процесс упорядочивания, т. е. перераспределения атомов внедрения, приводит к релаксации внутренних напряжений. В пользу идеи о доминирующей роли деформационного взаимодействия свидетельствует плавный, почти линейный характер изотермы сорбции в области упорядоченной фазы. [c.115]

    Если оба металла бинарной системы схожи как по размерам их атомов, так и по их электронной конфигурации (например, серебро и золото), в решетке металла возможно полное взаимное замещение атомов разных сортов без изменения структуры. При этом образуются твердые растворы замещения во всей области составов (рис. В.11,6). В подобных системах и в жидком состоянии наблюдается полная смешиваемость во всех отношениях. [c.361]

    Растворимость веществ в кристаллическом состоянии в Общем значительно меньше, чем в жидком. Поэтому полная смешиваемость данных веществ в жидком состоянии еще отнюдь не означает, что они будут образовывать твердые растворы в кристаллическом состоянии. Неограниченная взаимная растворимость в кристаллическом состоянии — явление сравнительно редкое. Большей частью только вещества, очень близкие по составу и строению молекул, обладают способностью в любых относительных количествах замещать друг друга в кристаллах, образуя твердые растворы замещения. Но зато весьма распространены, в особенности в металлических системах, твердые растворы (замещения или внедрения) в пределах небольших концентраций (см. 133). [c.338]

    Твердые растворы замещения. При образовании твердых растворов этого типа атомы растворителя в узлах решетки замещаются атомами растворяющегося элемента. Схема распределения атомов металла А и металла В в твердых растворах замещения приведена на рис. 91, а. В твердых растворах наблюдается также замещение в кристаллической решетке одного химического соединения другим, как это показано на [c.122]

    Наличие чужеродных атомов в решетке основного вещества (примеси, твердые растворы замещения или внедрения) всегда [c.159]

    В твердых растворах замещения частицы (атомы или ионы) одного компонента замещают в узлах кристаллической решетки частицы другого компонента (изоморфизм ). В твердых растворах замещения тип решетки и число атомов сохраняются, но изменяются ее объем и плотность. Для образования твердых растворов замещения необходимо выполнение ряда условий. Например, для соединений [c.190]

    Следует отметить, что образование твердых растворов как в природных, так и в технических силикатах является скорее правилом, чем исключением. Наиболее характерны в технологии силикатов твердые растворы замещения. [c.170]

    Рис, 70. Твердые растворы замещения (а) и внедрения (6) [c.110]

    Как и в индивидуальных кристаллических веществах, в твердых растворах атомы, ионы или молекулы удерживаются в кристаллической решетке силами межатомного, межионного или межмолекулярного взаимодействия. Но кристаллическую решетку твердого раствора образуют частицы двух или более веществ, размещенные друг относительно друга неупорядоченно. В зависимости от способа размещения частиц различают твердые растворы замещения и твердые растворы внедрения. [c.167]

    Сплав цинк—медь (латунь). Одним пз старейших процессов электроосаждения сплавов является латунирование. Латунь принято делить на белую (2—30 % меди), желтую (60—80 % меди) и томпак, или красную (88—95 % меди). Нели содержание меди в металлургических латунях не менее 62%, то по фазовому составу латунь представляет собой твердый раствор замещения. [c.59]

    Эти соединения имеют характер твердых растворов. Твердые растворы замещения образуются в основном веществами со сходными структурами (подобно жидкостям) твердые растворы внедрения могут быть образованы соединениями с самыми различными структурами. В таких соединениях энергии связей обусловлены, в основном, силами Ван-дер-Ваальса. Поскольку эти силы действуют в направлениях, где находятся элементы кристаллической решетки, результирующая энергия, приходящаяся на 1 тиоль вещества, может быть довольно значительной. Калориметрическими измерениями была установлена зависимость между теплотой образования соединений включения и степенью заполнения пустот кристаллической решетки. [c.77]


    Твердые растворы замещения называются твердыми растворами первого рода. В отличие от них фазы переменного состава, в которых атомы одного элемента не заменяют в структуре атомы второго, а располагаются в промежутках между ними, называются твердыми растворами внедрения или твердыми растворами второго рода. Твердые растворы внедрения образуются при значительном различии размеров атомов основного вещества и примеси. Тип химической связи у обоих компонентов может быть также совершенно иным. [c.172]

    Нередко также наблюдается явление изоморфизма — свойство атомов, иоиов или молекул замещать друг друга в кристаллической решетке, образуя смешанные кристаллы. Примером изоморфных веществ являются алюмокалиёв ые и хромокалиевые квасцы—KAI(S04)2-I2H2O и K r(S04) 2 I2H2O. Смешанные кристаллы являются совершенно однородными смесями твердых веществ — это твердые растворы замеш ения. Поэтому можно сказать, что изоморфизм — это способность образовать твердые растворы замещения. [c.141]

    Особый интерес представляют условия образования твердых растворов замещения, в которых железо играет роль растворителя. И. И. Корнилов установил связь между растворимостью элементов в железе и их ионными диаметрами атомный диаметр растворимого элемента должен отличаться от атомного диамет)ра железа не более чем на 8—15%. Только при этих условиях не происходит значительной деформации кристаллической решетки растворителя и изменения характера связи. Если это ра.зличие не превышает 8%, то образуются непрерывные твердые растворы если различие составляет 8—15%, то образуются ограниченные твердые растворы. Так, например, хром, с атомным диаметром, отличающимся от железа не более чем на 1,5%, дает с ним непрерывный ряд твердых растворов молибден, отличающийся от железа по атомному диаметру на 10%, ограниченно растворяется в железе еще меньше растворяется вольфрам и т. д. Отмеченные закономерности в отношении растворимости элементов в железе распространяются и на некоторые другие элементы. [c.123]

Рис. 92. Искажение кристаллической решетки при образовании твepдьJx растворов замещения Рис. 92. Искажение <a href="/info/4795">кристаллической решетки</a> при образовании твepдьJx растворов замещения
    В твердых растворах замещения структурные частицы одного 1 ещества (но[1ы, атомы или молекулы) занимают в кристаллической решетке места структурных частиц другого вещества без существенного изменения формы кристалла. Если два вещества способны образовать неограниченные твердые растворы замещешгя, то такие смешанные кристаллы называются изоморфными. Условием образования изоморфных твердых растворов замещения явля- [c.185]

    На рие. 25 схематически представлены кристаллические рсшст-кп твердого растворителя (а), твердого раствора замещения (б) и твердого раствора внедрения (в). [c.186]

    В качестве основного легирующего элемента а-спла-вов служит алюминий, образующий твердые растворы замещения на основе а-модификации титана. Сплавы с а-структурой обладают средними показателями прочности и пластичности и не упрочняются термической обработкой. Они отличаются высокой жаропрочностью, которая повышается с увеличением степени легирования. Особенно ценные качества их — отличная свариваемость и высокая термическая стабильность, т. е. отсутствие охрупчивания при длительном совместном воздействии высоких температур и напряжений. Например, двойные сплавы Т1—А1, содержащие до 6% А1, не охруп-чиваются при нагревании до 400—500 °С. [c.67]

    Электронные спектры поглощения растворов замещенных нитрофенолов регистрировали на спектрометре 8ресог(1 М40 в области волновых чисел 50000-11000 см в кварцевых кювета>( в растворе изопропанола хч . Установлена зависимость конста н-ты диссоциации и температуры кипения фенолов от удельного коэффициента поглощения [151 [c.70]

    Известно, что бор ча Стично растворяется в решетке, о.бразуя раствор замещения, а частично локализуется на границах кристаллитов, находясь как в атомарном состояиии, так и в виде вкраплений фазы карбида бора. Каждый атом замещеиия создает в валентной зоие одну дырку, тем самым изменяя концентрацию носителей заряда. Однавременно р.аств.орен1ие бора в решетке должно вызвать дополнительное рассеяние и соответственно уменьшение эффективной длины свободного пробега носителей заряда. В отличие от этого бор, находящийся на границах кристаллитов, не изменяет концентрацию носителей заряда и, очевидно, не влияет на их рассеяние (это предположение справедливо до тех пор, пока [1], существованием другой фазы можно пренебречь). [c.163]

    При достаточной близости форм и размеров молекул двух разных веществ могут быть получены бинарные молекулярные кристаллы, в которых молекулы этих веществ перемешаны статистически. Бинарные кристаллы рассматривают как твердые растворы замещения. Образование твердых растворов внедрения в большинстве случаев исключается, так как нет таких достаточно малых молекул, чтобы они помещались в те очень небольшие пустоты, которые имеются в молекулярных кристалла1х. Совместные молекулярные кристаллы образуют, например, акридин и антрацен, нафталин и р-хлорнафталин, взятые в определенных пропорциях. Молекулы изоморфных веществ, например дифинила и а, а -ди-пиридила, а также антрола (I) и антрахинона (И) [c.23]

    Возможность образования твердых растворов внедрения определяется факторами, характерными и для тверых растворов замещения, т. е. относительными размерами ионов, их валентностью и химическим сродством. Размер внедряемого иона обусловливается размерами незаполненных пустот или междуузлий в кристаллической решетке основного вещества. [c.172]

    Внедрение ионов в междуузлие также связано с выполнением условия сохранения общей элетронейтральности. Это может сопровождаться образованием вакансий, твердых растворов замещения или изменениями в электронной оболочке ионов. У многих силикатов введение дополнительных зарядов с ионами Li+ или Na+, находящимися в междуузлиях, нейтрализуется замещением некоторой части ионов Si + на ионы А1 +. [c.172]


Смотреть страницы где упоминается термин Раствор замещения: [c.134]    [c.445]    [c.124]    [c.234]    [c.364]    [c.365]    [c.110]    [c.111]    [c.657]    [c.18]    [c.362]   
Физическая химия (1980) -- [ c.133 ]

Краткий курс физической химии (1979) -- [ c.182 ]

Физическая химия Термодинамика (2004) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Бимолекулярные реакции замещения метиленгалогенидов в растворе

Влияние замещения водорода дейтерием на ассоциацию посредством водородных связей в растворах

Замещения реакции в водных растворах

Замещения реакции неводных раствора

Индуцированное излучением замещение ароматических соединений в разбавленных водных растворах

О попытках интерпретировать типы структур и границы взаимной растворимости элементов при образовании твердых растворов замещения, исходя из размеров и отношений атомных радиусов

Образование структур (твердых растворов) замещения и особые свойства фигуративных точек на краях диаграммы состояния

Потенциалы деформационного взаимодействия примесных атомов в растворах внедрения и замещения

Раствор замещения в кондуктометрии

Статистическая теория фазовых переходов порядок — беспорядок в двухкомпонентных растворах замещения и внедрения

Статистические модели металлических растворов замещения

Твердые растворы i внедрения и твердые растворы замещения

Твердые растворы внедрения замещения

Твердые растворы замещения

Твердые растворы замещения и сверхструктуры

Твердые растворы замещения, внедрения и вычитания

Упорядочение твердых растворов замещения

Установка титра рабочего раствора тиосульфата натрия методом замещения



© 2025 chem21.info Реклама на сайте