Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещения реакции в водных растворах

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]


    Примером такой реакции, сопровождающейся перегруппировкой углеродного скелета, служит реакция гетеролиза неопентилбромида. Несмотря на то что этот бромид — первичный алкилгалогенид, он практически не способен к реакциям нуклеофильного замещения по механизму N2 из-за пространственных затруднений, создаваемых разветвленным трег-бутиль-ным радикалом при подходе нуклеофильного реагента. Сольво-лиз неопентилбромида по механизму 5ы1, т. е. в протонных растворителях, также исключается, потому что он — первичный алкилгалогенид. Однако его можно заставить реагировать по механизму N1 в присутствии водных растворов солей серебра, так как ион серебра вырывает из молекулы алкилгалогенида анион брома, образуя бромид серебра. При этом первоначально образовавшийся менее устойчивый карбокатион (23), у которого положительный заряд находится на первичном атоме углерода, перегруппировывается в более энергетически выгодный третичный карбокатион (24), который затем и реагирует по трем возможным направлениям  [c.132]

    Реакции замещения в водном растворе, несомненно, наиболее обычный способ синтеза комплексов металлов. Метод основан на реакции взаимодействия соли металла в водном растворе с координируемым агентом. Например, комплекс [Си(ЫНз)4)504 легко можно получить действием [c.95]

    Простая реакция замещения в водном растворе, приведенная ниже, в действительности является двухстадийным процессом, включающим предварительное замещение X на молекулу воды с последующим замещением ОИо на У  [c.17]

    Эти правила имеют ряд исключений. Так, в реакциях замещения в водных растворах нельзя использовать Ы, К, Ва, Са и Ыа эти металлы взаимодействуют с водой. [c.206]

    Реакции замещения в водных растворах [c.95]

    Основная реакция замещения в водных растворах — обмен молекул воды (22) — была изучена для большого числа ионов металлов (рис. 34). Обмен молекул воды координационной сферы иона металла с основной массой молекул воды, присутствующей в качестве растворителя, для большинства металлов протекает очень быстро, и поэтому скорость такой реакции удалось изучить главным образом [c.172]

    АКТИВАЦИОННЫЕ ПАРАМЕТРЫ И ИЗОТОПНЫЕ ЭФФЕКТЫ В ПзО ДЛЯ РЕАКЦИИ ИМИДАЗОЛА С ЗАМЕЩЕННЫМИ ФЕНИЛАЦЕТАТАМИ (водный раствор ц=1,0 ( = 10-34°) [43) [c.67]

    Между какими из перечисленных ним<е взятых попарно веществ (металл + водный раствор электролита) будет протекать реакция замещения а) Fe + + НС1 б) Ag + u(N03)2 в) Си + НС1 г) Zn + + MgS04 д) Mg + Ni b  [c.188]


    Самарий (II) гораздо менее устойчив, чем Ей", и даже менее устойчив, чем УЬ". Самые последние измерения его стандартного потенциала дают значение около —1,55 в, что находится в соответствии с его очень сильными восстановительными свойствами. Разумеется, его водные растворы неустойчивы, так как он восстанавливает воду. Водные растворы, содержащие кроваво-красный 5т", можно приготовить обработкой водного 5гп" амальгамами щелочных металлов или электролитически. Двухвалентные галогениды получаются при восстановлении безводных галогенидов самария(1И) водородом или аммиаком при высоких температурах, ЗтГ, (в отличие от других галогенидов) можно получить термическим разложением иодида 5т" . Другие соединения можно получить реакциями замещения в водных растворах галогенидов. Все соединения 5т" термодинамически неустойчивы в водном растворе в присутствии [c.520]

    Обменная способность цеолитов — способность их к обменным реакциям в водной среде. Кристаллы Ка-цеолита, находящиеся в водном растворе хлористого кальция, замещают ионы натрия на ионы кальция, а ионы натрия переходят в раствор. Реакция протекает не полностью, т. е. только часть ионов натрия в цеолите замещается на ионы кальция. Степень обмена зависит от времени контакта и температуры. Используя способность к обменным реакциям, можно получить цеолиты, неодинаковые по характеру катионов и по степени замещенности. Большой интерес для разделения сложных смесей представляют цеолиты с разными размерами отверстий, соединяющих полости кристалла. Способ изменения размера отверстий заключается в проведении ионного обмена для этого Ка-цеолит помещают в раствор хлористого кальция, а Са-цеолит — в раствор хлористого натрия. Разработаны специальные методы ионного обмена, позволяющие полупить таким путем разнообразные модификации цеолитов. [c.101]

    Реакции с гидразином. Как уже указывалось, при действии водных растворов гидразина на алкиловые эфиры л-толуолсульфокислоты образуются главным образом продукты гидролиза. В отсутствие растворителя из эфиров этой кислоты с первичными спиртами получаются замещенные гидразины, а с вторичными спиртами, кроме того, образуются ненасыщенные соединения [224]  [c.365]

    Со(1И)-триеновые системы удобны тем, что обмен и замещение воды в координационной сфере иона металла — всегда очень медленный процесс от минут до часов), т. е. кинетические параметры можно легко оценить. Медленный обмен лигандов в водном растворе позволяет использовать изотопную метку для прослеживания реакционного пути координированной молекулы воды или гидроксогруппы и, таким образом, дает возможность различить прямой нуклеофильный и общий основной механизмы гидролиза. Однако помимо указанных преимуществ у этих систем имеются и очевидные недостатки, если рассматривать соответствие их (или отсутствие такового) ферментативным процессам. Например, Со(1П)-триеновые комплексы, инициирующие реакции, находятся в сте-хиометрическом, а не каталитическом соотношении с продуктом гидролиза или гидратации, который остается прочно связанным с находящимся в комплексе металлом. По этой причине комплексы Со(П1) не столь пригодны, как могли бы быть, для моделирования ферментов. Тем не менее из-за благоприятного понижения (ДЯ" практически не меняется) при комплексообразовании с подходящими лигандами наблюдалось увеличение скорости в 10 раз. Несмотря ни на что, обсуждаемая здесь система все же неплохая модель, что обусловлено способностью металлов поляризовать прилегающие молекулы субстрата и активировать координированные нуклеофильные группы. [c.356]

    Иногда в качестве катализаторов используются самые не-oжидaнньie вещества. Реакции обмена проводили в присутствии 10—15 мол.% фосфортриамида (А). Радикал R представляет собой какую-либо липофильную группу (но не метильную) [16]. Реакции замещения 5ц2 катализировали тетракис-(аЛкилсуль-финил метил) метаном [95] или метил-2-пиридилсульфоксидом [96]. Соединения В—F также использовали при проведении алкилирования бензилметилкетона алкилгалогенидами в присутствии водного раствора гидроксида натрия при комнатной температуре [17].  [c.78]

    Образующиеся в этой реакции замещенные фенилгидразоны нло. о растворимы в воде, поэтому обнаружение карбонильных соединений можно проводить в разбавленных водных растворах. [c.258]

    Составьте уравнения реакций полного замещения лигандов в водном растворе  [c.216]

    Реакции замещения в водных растворах — наиболее простой способ получения комплексов. Этот способ основан на взаимодействии гидратирО Ванного ио,на металла с координируемым лигандом. Если металл относится к элементам переходных рядов, реакция обычно сопровождается изменением цвета раствора. [c.190]

    Реакция с цианистыми и железосинеродистыми солями. Более удобным методом превращения сульфокислот в карбоновые кислоты по сравнению с рассмотренным выше методом сплавления с муравьинокислым натрием является перевод сульфокислот в цианиды и омыление последних. Выход цианидов колеблется, начиная со следов (в случае некоторых замещенных сульфокислот) и кончая приблизительно 50% (для нафталинсульфокислот). Большинство авторов, применивших в этой реакций как цианистые соли щелочных металлов, так и железосинеродистый калий, предпочитают последний ввиду полученных с ним более высоких выходов и его малой токсичности. Для успеха реакции необходимо, чтобы реагирующие вещества были хорошо высушены и тщательно перемешаны и чтобы реакция проводилась в таком сосуде, который позволял бы прогревание всей смеси до высокой температуры. Хорошие результаты получены в железной трубе, снабженной необходимой арматурой. Целесообразно применение не менее чем 100%-пого избытка цианида. Получение бензонитрила путем нагревания калиевой соли бензолсульфокислоты с цианистым [434] или с железосинеродистым калием [435] упоминается в литературе, но подробно не исследовано. 3-Хлор [436] и 3-бромбензол-сульфокислоты [437] дают низкие выходы нитрила изофталевой кислоты, тогда как из лара-изомеров [438] получается до 20% нитрила терефталевой кислоты, если перегонять реакционную смесь порциями по 10 г. При нагревании с обратным холодильником калиевой соли. и-нитробензолсульфокислоты [439] с водным раствором цианистого калия образуется сложная смесь сульфированных карбоновых кислот. [c.249]


    Энергии сольватации ионов не только в воде, но и в других растворителях существенно превышают таковые для нейтральных молекул, поэтому может сложиться впечатление, что в реакциях с участием ионов и нейтральных молекул термодинамика процесса будет определяться почти исключительно сольватацией ионов. Онако это не всегда так. Рассмотрим, например, две реакции нуклеофильного замещения в водном растворе при 298 К  [c.170]

    Однако в случае малоновой кислоты стадия бромирования является реакцией нулевого порядка по брому, причем можно проводить замещение в водном растворе, так что, очевидно, эта стадия включает образование енола. Однако при бромировании броммалоновой кислоты до диброммалоновой снова проявляется индуктивный эффект галогенного за.местителя, замедляющий [c.120]

    Циклический тетрамер [5(02)—N(NH4)]4 получен при обработке O2S I2 горячим раствором 02S(NH2)2 в ацетонитриле [188]. При реакциях обменного замещения в водном растворе из этого производного образуется [5(02)—NAg]4, который при обработке иодистым метилом дает [5(0г)—N Hs]4. [c.167]

    Потеря оптического вращения (+)-г мс-Со(еп)2С12 в водных растворах была исследована раньше [17] поведение этого комплекса в водных растворах заметно отличается от поведения в метаноле. Хотя замещение координированного хлора в метаноле прямо приводит к потере оптического вращения, его замещение в водных растворах в значительной степени проходит с сохранением конфигурации. Поскольку полагают, что как реакция кислотного гидролиза в водных растворах, так и обмен хлором в метаноле идут по межмолекулярному механизму с участием растворителя внешней сферы, очевидно, что скорость исчезновения сольвато-комплекса не должна быть одинаковой. Это различие может быть объяснено тем, что донорная способность воды выше донорной способности метанола. Следовательно, молекулы воды внешней сферы комплекса с большей легкостью будут занимать вакантное положение, освобождаемое хлором, без какой-либо перегруппировки. Для метанола следовало бы ожидать аналогичного поведения, но, возможно, из-за стерических препятствий внедрение метанола проходит медленнее, и потому перегруппировка может реализоваться. [c.270]

    Аминонафталинсульфокислоты ведут себя при обработке щелочью неодинаково, в зависимости от их строения, концентрации щелочи и температуры реакции. Подробное исследование действия водных растворов едкого натра различной концентрации на эти кислоты проведено Фирцем [342]. При этом, как правило, образуется смесь нескольких соединений, так как имеет место несколько однов[)еменно и последовательно протекающих реакций — замещение сульфогруппы на гидроксил или на водород и замещение аминогруппы на гидроксил. Так, из 1-ампнонафталин-4-сульфо-кислоты (нафтионовоп кислоты) получаются варьирующие количества 1-нафтола и 1-нафтол-4-сульфокислоты, а также следы [c.242]

    Реакция меркурирования очень интересна сама но себе. Исследование распределения изомеров при меркурировании толуола и нитробензола перхлоратом ртути в водном растворе хлорной кислоты дало ])аспределе-ние изомеров, подобное получаемому при других типичных реакциях электрофильного замещения [183]. Такие же результаты были получены с ацетатом ртути в ледяной уксусной кислоте..  [c.459]

    Использование обычных, четвертичных аммониевых или фосфониевых солей [4, 38, 39], краун-эфиров [44, 77] или полиподных молекул типа 7 [46] не привело к существенному улучшению процесса, за исключением тех случаев, когда вследствие чувствительности субстрата к воде в реакцию вводился твердый K N [1035]. Например, в случае аллильных и бензильных галогенидов при применении водных растворов цианидов гидролиз может подавлять реакцию замещения. Тем не менее в литературе можно найти методики проведения таких реакций с использованием водного K N [70, 71, 82, 897]. Если желательно избежать присутствия воды, то для получения замещенных бен-зилцианидов можно с успехом применять твердофазную МФК-систему с 18-краун-6 в качестве катализатора. Аналогично получаются триметилсилилцианид [65] и цианформиат (R = фенил. [c.119]

    Исследовано [88, 89] замещение хлора на азидную группу в поливинилхлориде (ПВХ). Реакцию проводили в гетерогенной смеси порошкообразного ПВХ и водного раствора азида натрия в присутствии четвертичных аммониевых солей. Тетрабутилам-монийхлорид и тетрабутиламмонийбромид как катализаторы были лучше, чем более обычные поверхностноактивные вещества [88]. Тетрабутиламмонийхлорид был также наилучшим катализатором и при проведении реа,кции в растворе ТГФ, в котором ПВХ растворим, а натриевая соль нерастворима [88]. [c.140]

    Он сделал предположение, что в ходе реакции образуются следовые количества Ы,Н,Н, Н -тетраметилпиперазинийдихлори-да, который действует как катализатор [224]. Впоследствии он показал, что под действием водного раствора гидроксида натрия и ТЭБА из бензилхлорида и циклогексанола образуется смесь простых эфиров. Однако работа Жаррусса не привлекла внимания химиков. Точно так же и ранние работы по МФК-алки-лированию фенола и бензилового спирта замещенными аллилхлоридами в присутствии системы КОН/четвертичные аммониевые хлориды остались погребенными в литературе [211, 225, 226]. Примерно в то же самое время в патентной литературе были описаны некоторые реакции, которые в широком понимании можно считать МФК-яроцессами, например получение эпоксидных смол из дифенол ОБ [186, 228] или из циануровой кислоты [186] и эпихлоргидрина в присутствии щелочей и аммониевых солей. [c.148]

    Шестикоординированные октаэдрические комплексы гораздо труднее реагируют по механизму Sn2 из-за наличия шести лигандов вокруг центрального атома металла, например Со(1П), которые оставляют мало места для встраивания замещающей группы в активированный комплекс. Исследования реакций замещения октаэдрических комплексов Со(1П) показали, что важнейшая, или скоростьопределяющая, стадия таких реакций включает диссоциацию связи между Со (III) и группой, покидающей комплекс. Замещающая группа не вовлекается в эту исходную стадию диссоциации. Например, в водном растворе HjO замещает С1 в комплексе Со(КНз)5СР , в результате чего образуется o(NH3)jH20 . С исследованиями скоростей этой и других подобных реакций лучше всего согласуется диссоциативный механизм Sfjl, который можно описать следующим образом  [c.384]

    Эта вторая часть анализа совпадает почти с методом Паркера-Мак Иллинея. Масло растворяется в четыреххлористом углероде, к нему прибавляют раствор брома тоже в четыреххлористом углероде и затем через несколько минут водный раствор иодистого калия. Избыток брома, не вошедший в реакцию, вытесняет из иодистого калия иод, который титруется тиосульфатом. После обесцвечивания в растворе содержится еще бромистый водород, который образовался вследствие реакций замещения. После приба- [c.290]

    В работах, посвященных метиленированию циклических углеводородов, прежде всего было показано, что реакция протекает и здесь по тем же закономерностям, что и в углеводородах с открь[той цепью. В табл. 77 приведены результаты метиленирования этилциклопентапа и метилциклогексана, указывающие на хорошее совпадение количества ожидаемых и образующихся при метиленировании углеводородов. Следует обратить также внимание на то, что при метиленировании этилциклопентапа получаются не все теоретически возможные гомологи состава Сд, а лишь те углеводороды, которые могут образоваться при замещении водородных атомов в исходном углеводороде на метильный радикал (например, в образовавшейся смеси изомеров отсутствуют три-метилциклопентаны, синтез которых метиленированием этил-циклопентана, естественно, невозможен). Это обстоятельство и определяет отмеченную выше специфичность в получении смесей изомеров следующего очередного гомолога. Типичная хроматограмма продуктов метиленирования приведена на рис. 80. Метиленирование осуществлялось в кварцевой пробирке объемом около 2 мл, снабженной рубашкой для непрерывного охлаждения водой. Источником облучения служила водородная лампа типа ПРК-2. Реакционная смесьнредставляла собой раствор диазометана в исходном углеводороде. Диазометан получался в самом опыте взбалтыванием нитрозометилмочевины, водного раствора щелочи и исходного углеводорода. Подробности эксперимента описаны [c.292]

    Довольно большое значение (большее, чем в жирном ряду) имеет реакция замещения гидроксильной группы фенола аминогруппой. Правда, в случае одноатомных фенолов такое замещение происходит с трудом простейший фенол СвНзОН образует значительные количества анилина СбНбЫНа и дифениламина СбН. ЫНСвН5 только при нагревании с аммиакатом хлористого цинка при 300 . Однако амини-рование многоатомных фенолов протекает гораздо легче. Резорцин превращается в лг-аминофенол при нагревании с концентрированным водным раствором аммиака уже при 200 , а аналогичная реакция с флороглюцином протекает даже при слабом нагревании  [c.539]

    Тетразол (бесцветные кристаллы с т. пл. 155°) и его не замещенные у азота-производные имеют в водных растворах кислую реакцию они дают стойкие металлические соли (например, серебряные, а также соли щелочных металлов). Большинство производных тетразола отличае-гся значительной устойчивостью. Об ароматическом характере тетразолов свидетельствует способность 5-аминотетразола нормально диазотироваться. Образующаяся соль диазония способна сочетаться и дает большинство реакций характерных для диазосоединений так, при восстановлении она превращается в 5-гидразйнотетразол. "  [c.1011]

    В реакциях нуклеофильного замещения, протекающих в водном растворе, принято относить константы скорости реакций различных (например, алкилирующих) реагентов с нуклеофильными соединениями к удельным скоростям их реакций с водой а == [В11о = [НаО]. [c.210]

    К реакциям анодного замещения относится также процесс электрохимического роданирования, протекающий при электролизе ароматических соединений в водном растворе роданистого калия. Так, при электролизе с высоким выходом получен роданфенол  [c.223]

    Классическим примером реакции нуклеофильного замещения является превращение г алогеналкила в спирт при действии на него водного раствора гидроокиси натрия  [c.93]

    Исследуя поведение различны комплексов в растворе, можно убедиться, что у некоторых из них замещение лигандов происходит с очень большой скоростью, а у других комплексов этот процесс протекает довольно медленно. Например, добавление аммиака к водному раствору USO4 вызывает практически мгновенное изменение бледно-голубой окраски, характерной для иона Си(Н20)4 , на темно-синьэю окраску, характерную для иона Си(МНз)4 . Но если затем подкислить этот раствор, бледно-голубая окраска быстро восстанавливается в результате следующей реакции  [c.384]

    В отличие от Си(ЫНз)4 ион o(NH3)g образуется труднее. Но если такой комплекс поместить в кислый раствор, то реакция, приводящая к образованию NH , длится несколько суток. Следовательно, координированные группы NH3 нелегко отделяются от металла. Комплексы, способные, подобно u(NHj)4 , к быстрому замещению лигандов, называются лабильными, а те комплексы, в которьк, как в Со(ЫНз) , замещение лигандов идет медленно, называются инертными. Различие между лабильными и инертными комплексами определяется тем, насколько быстро устанавливается равновесие в реакциях замещения лигандов, а не положением этого равновесия. Например, хотя комплекс Со(ЫНз) инертен в кислых водных растворах, консланта равновесия показывает, что этот комплекс не является термодинамически устойчивым в таких условиях  [c.384]

    В реакциях нуклеофильного замещения возможны случаи, когда за взаимодействие с субстратом Р—X конкурирует два или несколько нуклеофилов. В частности, во многих растворителях, имеющих нуклеофильные центры, взаимодействие субстрата с реагентом происходит параллельно с взаимодействием субстрата с растворителем. Например, при действии на /и/7< т-бутилхлорид водного раствора азида натрия наряду с /прет-бутилазидом образуется третичный бутиловый спирт. При этом выход азида выше, чем выход спирта, так как реакция с заряженным азид-ионом протекает с большей скоростью, чем с водой  [c.99]

    Следовательно, экспериментально определенный порядок реакции может дать указание на механизм процесса замещения. Однако, если процесс проходит в водном растворе и вода участвует в реакции, порядок реакции может понижаться на единицу (концентрация воды постоянна), и это затрудняет решение вопроса о механизме реакции. По обоим механизмам образуются промежуточные активные комплексы, характеризующие процесс своей энергией активации. Октаэдрические комплексы чаще реагируют по механизму диссоциации 5лг1, и промежуточный комплекс имеет пониженное координационное число. Плоские (квадратные) и тетраэдрические комплексы более склонны участвовать в процессах, протекающих по механизму ассоциации с повышением координационного числа в промежуточном комплексе. [c.350]


Смотреть страницы где упоминается термин Замещения реакции в водных растворах: [c.385]    [c.382]    [c.144]    [c.356]    [c.208]    [c.210]    [c.245]    [c.382]    [c.366]    [c.414]   
Химия координационных соединений (1966) -- [ c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Раствор замещения

Реакции в растворах

Реакции замещения



© 2025 chem21.info Реклама на сайте