Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура застывания жидких смазок

    Таким образом, переход нефтепродуктов из жидкого состояния в твердое совершается не в одной определенной температурной точке, как это характерно для индивидуальных химических соединений, а в интервале температур. Этот переход всегда сопровождается некоторой промежуточной стадией помутнения, а затем загустевания, при которой нефтепродукт постепенно теряет свою подвижность, застывает. Температура застывания нефтепродукта не является их физической характеристикой, а носит условный характер. Тем не менее значение этой условной величины практически очень велико. Циркуляция масла в системе смазки двигателя, а также подача толлива через топливную систему возможны только в том случае, если нефтепродукт находится в жидком состоянии, при загустевании же он теряет текучесть и не прокачивается. Так же велико значение этого показателя при транспорте нефтепродуктов. При использовании многих нефтепродуктов необходимо изучить их поведение при низких температурах и хотя бы приблизительно знать температуру, при которой нефтепродукт начинает терять свойство текучести и застывает. Методы определения температуры помутнения и застывания приведены в табл. 31. [c.174]


    Широко распространены смазки серии ОКБ-122, четыре пластичные и пять жидких, которые обычно называют приборными маслами. Все эти смазки в качестве масляной основы содержат смеси силиконовых жидкостей и высокоочищенных нефтяных масел. Благодаря высокому содержанию кремнийорганических жидкостей, обладающих низкими температурами застывания и пологой кривой вязкости, смазки серии ОКБ-122 обеспечивают работу механизмов разнообразных приборов при очень низких температурах (до [c.701]

    Жидкие силиконы можно перегонять при нормальном давлении без разложения. Они представляют собой жидкости соломенно-желтого цвета с весьма высоким индексом вязкости и низкой температурой застывания и могут применяться в качестве специальных смазочных масел. Некоторые силиконы вследствие высокой теплостойкости могут применяться в качестве теплоносителей. Из них можно вырабатывать также консистентные смазки, отличающиеся хорошей теплостойкостью и химической стойкостью. Силиконовые смолы с асбестом и стеклянным волокном применяют как уплотнители и прокладочный материал. Силиконовые каучуки стойки, длительно выдерживают воздействие температур до 200°, не становясь при этом хрупкими и не размягчаясь. Силиконовую резину можно вальцевать и перерабатывать в шкурку [161]. [c.209]

    Поскольку влияние смол на эффективную вязкость в зависимости от их содержания в дисперсионной среде различно, в данном случае требуемый температурный интервал работы смазки будет определять необходимое количество смол в жидкой основе. Температура застывания масляных основ смазок существенно не влияет на данный показатель. [c.58]

    Большое практическое значение имеет также использование жидких хлорпарафинов для улучшения свойств смазок. Хлорпарафин добавляют к различным смазкам, в том числе на основе сополимеров октадецена и изобутена, стирола и изопрена. При этом понижается температура застывания смазок и повышается их способность выдерживать давление, а также увеличивается прочность смазывающих пленок и их коррозионная стойкость. [c.553]

    Аммиак — бесцветный газ, с острым, раздражающим слизистые оболочки запахом (порог восприятия 0,037 мг/л). Плотность жидкого аммиака 0,64 при 0°С, температура кипения при атмосферном давлении —33,4°С. Жидкий аммиак проводит электрический ток, горит желтоватым пламенем в воздухе при содержании 11—14%, а при концентрации 16—25% смесь аммиака с воздухом при наличии открытого пламени взрывается. Аммиак не корродирует стали, но в присутствии влаги вызывает коррозию цинка, меди, бронзы и других сплавов меди, за исключением фосфористой бронзы. Масло, растворенное в аммиаке, разносится им по всей системе и попадает в испаритель. Поэтому для смазки аммиачного компрессора выбирают масла с низкой температурой застывания (—25ч--30°С). [c.31]


    Для компрессоров холодильных машин применяют минеральные жидкие масла и загущенные смазки, получаемые из продуктов переработки нефти. Вязкость смазочных масел для холодильных компрессоров должна соответствовать температурным условиям работы компрессора, температура застывания (замерзания) быть достаточно низкой, температура вспышки масляных паров — высокой. В масляных парах не должно содержаться механических примесей, кислот, щелочи и воды. [c.133]

    Из смазочных масел, полученных из парафинистых нефтей, во избежание их застывания при низких температурах удаляют твердые высшие алканы (депарафинизация). Масло растворяют чаще всего в смеси метилэтилкетона, бензола и толуола, охлаждают до —20 или —40°С и отфильтровывают твердый парафин, после чего отгоняют из масла смесь растворителей. Для депара-финизации дизельного топлива используют способность мочевины образовывать труднорастворимые комплексные соединения с высшими н-алканами, которые отделяют и разлагают нагреванием до 60—75°С на мочевину и жидкий парафин. После очистки твердый парафин применяют как изолятор в электротехнике, для пропитывания спичек и кож, для изготовления свечей. Окислением кислородом воздуха превращают его в синтетические жирные кислоты (см. главу XIV), используемые в мыловарении. Сплавлением со смазочным маслом получают вазелин, применяемый для смазки приборов, в медицине и парфюмерии. Жидкий парафин после растворения в бензине очищают обработкой противоточно движущимся твердым адсорбентом (от примеси ароматических углеводородов), затем отгоняют растворитель. Его используют для получения высших жирных спиртов (см. главу XIV) и белково-витаминного концентрата (см. главу V). Продувая воздух через гудрон, при нагревании превращают его в битум. Это черная полужидкая или твердая смолистая масса, которая служит для приготовления дорожного асфальта, а также в качестве электро- и гидроизолирующего материала в электротехнике. Сжиганием нефтяных масел при недостатке воздуха получают сажу для изготовления печатной краски и резиновых изделий. [c.189]

    Присутствие хладагента в смазочном масле существенно снижает температуру застывания масла. По данным Веблинга, на каждый процент растворенного в масле хлористого метила при небольшой его концентрации температура застывания понижается иа 5—7 К. Существенно меняются в растворах и другие свойства как хладагента, так и масла. Как упоминалось выше, возрастает вязкость хладагента при растворении в нем масла. Так, при 0° С 5% растворенного масла увеличивают вязкость К12 в 1,5 раза, а 10% масла — в 2,5 раза. Наличие хладона в масле уменьшает вязкость масла. При 0° С 10% растворенного в масле К12 уменьшают вязкость масла примерно на 25%, 20% — в два раза, 30% — в три раза, что может угрожать нарушением нормальной смазки трущихся поверхностей, Из-за такого уменьшения вязкости масла при растворении хладонов приходится применять для смазки хладоновых и пропановых компрессоров смазочные масла с повышенной вязкостью. Абсорбция хладона маслол сопровождается увеличением объема масла, однако объем смеси обычно не следует правилу аддитивности, т. е. не является суммой объемов смешивающихся количеств. В большинстве случаев в результате действия сил притяжения между молекулами растворенных веществ объем смеси оказывается меньше суммы объемов смешивающих жидких компонентов. Эти особенности растворов хладагентов и смазочных масел оказывают существенное влияние на работу холодильных установок. [c.236]

    Значение консистентных смазок в зубчатых передачах можно проиллюстрировать на примере некоторых устаревших артиллерийских систем. Возможность использования жидких масел в зубчатых передачах, имевшихся на орудиях, исключалась из-за того, что корпуса этих передач нельзя было в необходимой степени уплотнить. Наилучшим выходом оказалось использование консистентной омазки, приготовленной на масле с низкой температурой застывания, не только в подшипниках, о и в шестернях. Было установлено, что требуется такое количество смазки, которое обеспечивает полное покрытие всех рабочих поверхностей, а следовательно, и защиту их от коррозии. Поскольку здесь речь идет о смазке механизмов горизонтальной и вертикальной наводки орудий, количество смазки должно быть минимальным. В противном случае при низких температурах требовалось при работе с этими механизмами затрачивать слишком большие усилия. [c.352]

    Смазки на полисилоксановых (силиконовых) жидкостях. Онп появились в Советском Союзе только после Отечественной войны, когда было организовано полупромышленное производство кремнийорганических жидкостей. Первыми, получившими практическое применение, были приборные смазки, разработанные в ОКБ—122, — жидкие и пластичные. Жидкие приборные смазки ОКБ-122 (приборные масла) приготовляют смешением полисилоксановых жидкостей с нефтяными маслами. Они имеют очень низкую температуру застывания (не выше минус 65-минус 70 °С) и температуру вспышки 160—170 °С (в открытом тигле). Из пластичных смазок наиболее широко применяют приборные смазки ОКБ-122-7, ОКБ-122-7-5, ОКБ-122-8 и ОКБ-122-12 (МРТУ 38—1—230—66). Их изготовляют загущением смеси этилполисилоксановой жидкости и масла МС-14 литиевым или натриевым мылом, а также церезином. Эти дорогостоящие смазки выпускают в ограниченном количестве. [c.245]


    Диэфирные масла, полигликолевые эфиры, силоксаны, сложные эфиры фосфорной кислоты, перфтор- и хлорфторалкильные эфиры и углеводороды имеют большое значение для производства пластичных смазок. Эти синтетические масла выпускаются с различной вязкостью, они имеют хорошие вязкостно-температурные и низкотемпературные характеристики. Недостатки масел заключаются в высоких температурах застывания (полифениловые эфиры) или сильной склонности к сползанию с поверхности металла (силоксаны). Специальные пластичные смазки с такими жидкими компонентами составляют менее 1 % общего производства смазок их применяют главным образом в авиационно-космических объектах. [c.422]

    Бентонит адсорбирует органические катионы так же сильно, как и неорганические. Различные аминопроизводные бентонита получают простыми реакциями катионного обмена, причем имеются доказательства, что эти реакции протекают стехиометрически [40]. Группа веществ, выпускаемых в продажу под названием бентоны , получается при взаимодействии бентонита с длинноцепочечными аминами, которые могут быть как четвертичными, так и нечетвертичными [41]. Бентоны способны образовывать гели в различных органических жидкостях, включая и смазочные масла. Их можно применять для изготовления смазок, обладающих необычными ценными свойствами [42] Способность бентонов к гелеобразованию в органических средах можно регу лировать в широких пределах изменением длины цепи или изомерной струк туры органического катиона. Таким путем с помощью бентонов легко загу щать различные жидкие синтетические смазки и минеральные масла. Ком плексы бентонита с органическими аминами находят широкое применение они употребляются как загустители и модификаторы для восков [43], асфаль-тов и смол [44], как эмульгаторы в эмульсиях типа вода в масле , а также в смеси с металлическими мылами—для приготовления смазок на основе минеральных масел [45]. Они применяются также для повышения индекса вязкости масел и в качестве присадок, понижающих их температуру застывания [46]. Фосфониевые и стибиновые основания, как и азотистые основания, используются при изготовлении органофильных бентонитовых комплексов [47]. [c.217]


Смотреть страницы где упоминается термин Температура застывания жидких смазок: [c.247]    [c.272]    [c.49]    [c.247]    [c.124]   
Товарные нефтепродукты, их свойства и применение Справочник (1971) -- [ c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Температура застывания



© 2025 chem21.info Реклама на сайте