Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные растворы особенности

    При смешении водных растворов жидкого стекла и серной кислоты выпадение в осадок нерастворимого соединения (геля) происходит всегда, вне зависимости от соотношения взятых растворов. Количество осадка определяется минимальной концентрацией серной кислоты — порогом коагуляции. Скорость коагуляции золя кремневой кислоты зависит от температуры смеси гелеобразующих растворов, концентрации ЗЮг в растворе, pH среды, применяемой кислоты (серная или соляная). Скорость коагуляции растет при повышении температуры и концентрации исходного коллоидного раствора и при понижении вязкости особенно сильно на вязкость раствора влияет температура. [c.47]


    Многочисленные исследования, проводившиеся на протяжении многих десятилетий, показали, что коллоидное состояние вещества—это высокодисперсное (сильно раздробленное) состояние, в котором отдельные частицы являются не молекулами, а агрегатами, состоящими из множества молекул. Приняв это определение коллоидного состояния (коллоидной системы), можно сформулировать те принципиальные особенности, которые отличают коллоидные системы от истинных растворов. Поскольку коллоидные частицы состоят из множества молекул, то,, очевидно, им могут быть приписаны все термодинамические свойства Фазы. Равным образом молекулы среды, в которой диспергированы коллоидные частицы, образуют другую фазу. Следовательно, всякий коллоидный раствор является гетерогенной, многофазной (в простейшем случае двухфазной) системой в отличие от истинных растворов, которые являются гомогенными системами. Отсюда же следует вывод, что поскольку всякий коллоидный раствор представляет гетерогенную систему, условием ее образования является нерастворимость (или очень малая растворимость) вещества одной фазы в веществе другой фазы, ибо только между такими веществами могут существовать физические поверхности раздела, [c.12]

    Вследствие этих особенностей растворы высокомолекулярных веществ в ряде случаев ведут себя как коллоидные растворы (малая скорость диффузии, высокая вязкость, явление набухания и др.). В соответствии с этим такие растворы считались раньше коллоидными растворами. Однако в противоположность коллоидным растворам они термодинамически устойчивы и поэтому являются истинными молекулярными растворами. Следует отметить, что при растворении в некоторых растворителях высокомолекулярные вещества дают также коллоидные растворы. Так, натуральный каучук в бензоле дает истинный (молекулярный) раствор, а в воде—коллоидный (латекс). Растворы нитрата целлюлозы в ацетоне и растворы желатина в воде являются молекулярными растворами, а растворы нитрата целлюлозы в воде и растворы желатина в спирте—коллоидными растворами. [c.254]

    Можно было бы привести много других подобных примеров, подтверждающих правильность этого наблюдения. Особенно наглядно оно иллюстрируется следующим опытом. Если титровать разбавленный раствор бромистого калия азотнокислым серебром, немного не доведя титрование до конца, так, чтобы в растворе остался небольшой избыток бромистого калия, то в известных условиях может получиться при этом коллоидный раствор бромистого серебра, частицы которого заряжены отрицательно и мицелла которого имеет формулу [c.519]


    Взаимодействие силикатов с кислотами. К 3—4 каплям испытуемого раствора добавляют 2—3 капли разбавленного раствора соляной или серной кислоты. В присутствии силикат-ионов кремниевая кислота выделяется в виде белого студенистого осадка, образование которого происходит в некоторых случаях не сразу вследствие склонности кремниевой кислоты к образованию коллоидного раствора, особенно в сильнокислой среде. [c.211]

    Для полимерных соединений характерна очень большая молекулярная масса, изменяющаяся нередко от 8—10 тыс. до нескольких миллионов. Высокие молекулярные массы полимеров, содержащих в молекуле 1000—1500 и более атомов, обусловливают и особенность их свойств. Они в отличие от иизкомолекулярных веществ полидисперсны по молекулярной массе, растворяются с предварительным набуханием и иногда образуют коллоидные растворы. Полимеры не летучи, их очистка затруднена и в большинстве случаев ее осуществляют переосаждением. Если в низкомолекулярных соединениях форма молекулы оказывает незначительное влияние иа их свойства, то строение макромолекулы полимеров наряду со строением элементарных звеньев в основном их определяет. [c.31]

    При смешении коллоидных растворов (особенно, если они содержат противоположно заряженные частицы) часто наблюдается их взаимная коагуляция. Если частицы в коагуляте находятся в тесном контакте друг с другом, то со временем они срастаются, и коагуляция необратима (например, коагуляция золей золота). [c.143]

    Полимерные вещества могут растворяться в низкомолекулярных жидкостях, образуя истинные растворы. Эти термодинамически равновесные растворы содержат большие частицы — цепные молекулы — и поэтому обладают характерными для коллоидных растворов особенностями диффузии, седиментации и т. п. [c.157]

    При изучении катионов П1 группы, как уже указывалось в 23, приходится встречаться со склонностью их соединений к образованию коллоидных растворов. Особенно легко образуют коллоидные растворы некоторые сернистые соединения и гидраты окисей металлов. [c.54]

    Полученный после коагуляции осадок содержит много примесей, в частности, те ионы, которые были использованы для коагуляции. Для освобождения осадка от адсорбированных примесей его необходимо промыть. При этом часто из осадка вновь образуется коллоидный раствор, особенно при втором, третьем и дальнейшем промывании. Проходящий через фильтр коллоид коагулирует в стакане, в который стекают промывные воды. В этом случае говорят осадок проходит через фильтр . [c.60]

    Рассматривая ферменты как специфические химические преобразователи, переводящие определяемое вещество в форму, детектируемую физическими или химическими методами, удалось придумать и разработать новый класс сенсоров, для которых характерна чувствительность к биологическим соединениям. Перспективным путем повышения селективности и чувствительности и расширения возможностей этих устройств является комбинирование различных ферментов, например эстераз, дегидрогеназ и оксидаз с детекторами-полярографическими, кондуктометрическими, потенциометрическими, акустическими и оптическими. Б первых ферментных электродах ферменты физически удерживались на поверхности сенсора или в непосредственной близости от нее. Позже были предложены методы химической иммобилизации, осаждения и другие. Коферменты также физически или химически закрепляются на поверхности сенсора. Перевод фермента в нерастворимую форму как способ увеличения его времени жизни позволяют избежать осложнений, связанных с осмотическими явлениями в коллоидных растворах, особенно когда в ферментном электроде используется проницаемая для определяемого компонента мембрана В идеальном случае ферментный биосенсор должен работать непосредственно в неразбавленной цельной крови, подобно газовым и рН-электродам, в свое время произведшим революцию в анализе. [c.11]

    Поскольку адсорбция происходит на поверхности частиц осадка, необходимо, чтобы эта поверхность была возможно большей. Особенно велика суммарная поверхность частиц (размером от 1 до 100 ммк) в коллоидных растворах. Поэтому при использовании адсорбционных индикаторов очень важно, чтобы продукт реакции хотя бы частично присутствовал в форме коллоидного раствора. [c.328]

    По ряду свойств аэрозоли подобны коллоидным растворам для них характерны термодинамическая неустойчивость, броуновское движение, диффузия, седиментация, эффект Тиндаля, избирательное светорассеяние, электрофорез и др. Но газовая дисперсионная среда вносит некоторые особенности светорассеяние в аэрозолях значительно сильнее, чем в коллоидных растворах броуновское движение и диффузия — более интенсивны электрический заряд дисперсных частиц аэрозолей ничтожно мал, а воздух [c.290]

    Все эти особенности в свою очередь характерны для коллоидных растворов. [c.101]

    Тяжелые остатки можно рассматривать как смесь истинных и коллоидных растворов полимеризованных и конденсированных разнообразных органических структур. В этом случае может быть полезным, хотя и весьма относительным, суждение о структурных особенностях сырья для коксования по его вязкости. [c.25]

    Причины таких значительных расхождений в величинах молекулярных весов асфальтенов многочисленны н разнообразны. Методы подготовки асфальтенов и определения пх молекулярных весов весьма значительно влияют на величину молекулярного веса. Химическая природа нефти, пз которой выделены асфальтены, низкая растворимость, сложность их структуры и склонность к образованию агрегатов коллоидной природы, а также характер растворителя, применяемого прп этом, также сказываются на результатах определения молекулярных весов. Все этп факторы приводят к тому, что растворы (особенно концентрированные) асфальтенов не подчиняются законам идеальных растворов. [c.501]


    ВМС в нефтяной системе, обладая свойствами коллоидных растворов (способность к образованию ассоциатов, коагулированию, диффузионным сопротивлениям при осуществлении физических и химических процессов и др.), имеют специфические особенности (самопроизвольное образование растворов ВМС из ассоциатов, высокая степень устойчивости). [c.36]

    Хорошо очищенные минеральные масла как дестиллатные, так и остаточные не показывают каких-либо аномалий, присущих коллоидной структуре. Наоборот, неочищенны дестиллатные масла, а в особенности вязкие остаточные, обнаруживают явные признаки коллоидной структуры, выражающиеся в появлении при низких температурах аномалий при определении вязкости, т. е. одного из явлений, присущих коллоидным растворам. [c.54]

    Образование коллоидных растворов может происходить при осаждении и растворении осадков и в ходе некоторых других химико-аналитических процессов. В коллоидных системах растворенное вещество находится в виде частиц размером см, что намного превышает размеры обычных ионов и молекул в истинном растворе, но значительно меньше, чем размеры частиц, выпадающих в осадок. В связи с такими размерами частиц вещество в коллоидном состоянии имеет развитую поверхность, способную адсорбировать большое число ионов, и адсорбированные ионы в значительной степени определяют свойства коллоидных растворов и их особенности. С химико-аналитической точки зрения важно отметить, что частицы коллоидного раствора проходят через обычные фильтры, применяемые в аналитической химии, и не выпадают в осадок даже при длительном хранении. В проходящем свете коллоидные растворы прозрачны и лишь при боковом освещении можно заметить, что они мутные. Это явление называют эффектом Тиндаля. Обнаружение эффекта Тиндаля является обычным экспериментальным доказательством существования коллоидного раствора. [c.98]

    Аморфные осадки, особенно гидрофильные, лучше всего осаждать из. возможно более концентрированных растворов, так как при этом значительно уменьшаются общая поверхность и объем осадка. Один из наиболее гидрофильных осадков — кремневую кислоту, вообще не удается выделить иначе, как при удалении всего растворителя. Только тогда происходит полная коагуляция ее коллоидного раствора. Для этого раствор силиката обрабатывают соляной кислотой и выпаривают досуха. [c.78]

    Работа 23. Исследование устойчивости коллоидного раствора магнетита 3. Особенности стабилизации грубодисперсных систем. ... [c.214]

    Остановимся на тех особенностях коллоидных растворов, которые были известны уже в шестидесятых годах XIX века. [c.10]

    Все коллоидные растворы способны рассеивать свет или, как говорят, опалесцировать. Опалесценция становится особенно заметной, если, как это делал Тиндаль, через коллоидный раствор пропускать пучок сходящихся лучей, поставив между источником света и кюветой с раствором линзу. При этих условиях в коллоидном растворе, наблюдаемом сбоку, виден ярко светящийся конус (конус Тиндаля). Интенсивная опалесценция не служит строгим доказательством наличия в системе межфазных поверхностей раздела, но, безусловно, указывает на неоднородность коллоидных растворов. [c.10]

    Окраска коллоидных растворов. В результате избирательно о поглощения света (абсорбции) в сочетании с дифракцией образуется та или иияя окраска коллоидного раствора. Опыт показывает, что большинство коллоидиых (особенно металлических) растворов ярко окрашено в самые разнообразные цвета, начиная от белого и кончая совершенно черным, со всеми оттенками цветового спектра. Так, золи АзгЗз имеют ярко-желтый, ЗЬгЗз — оранжевый, Ре(ОН)з — красновато-коричневый, золота — ярко-красный цвет и т. п. [c.297]

    После активации шарики промывают водой для удаления избытка активирующего раствора (главным образом ионов SOI ) и образовавшихся в результате реакции вредных для катализатора соединений к таким соединениям в первую очередь относится натрий. При промывке не только изменяется состав жидкой фазы, в которой распределены частицы геля, но и происходит удаленпе растворимых компонентов с поверхности твердых шариков. Постепенно процесс проникает в глубь шариков, в основном извлекая легко растворимые в воде и адсорбированные примеси (в первую очередь сернокислый натрий). Но возможно также растворение и основных компонентов — окислов кремния и алюминия. Растворимость их, хотя практически и ничтожна, но не равна нулю. Молекулы гидрогеля будут переходить в истинный пли коллоидный раствор прежде всего с поверхности, и таким образом при промывке (особенно длительной) поверхность шариков будет сглаживаться. Промывка катализатора от посторонних растворимых солей начинается еще в процессе актива- [c.60]

    Метод подвижной границы. Этот метод получил особенно широкое распространение на практике благодаря относительной про> стоте. Принцип его основан на наблюдении за скоростью передвижения под влиянием электрического поля границы между обычно мутным или окрашенным коллоидным раствором и прозрачной бесцветной специальной боковой жидкостью . Для исследования прозрачного бесцветного золя используют специальные приемы, способствующие проявлению границы, например освещение ультрафиолетовым светом. [c.207]

    В более совершенных приборах боковые колена градуированы как над кранами, так и под ними, что позволяет работать с коллоидными системами менее плотными, чем боковая жидкость. Это особенно важно при работе с эмульсиями, у которых плотность дисперсной фазы (обычно углеводорода), как правило, меньше плотности дисперсионной среды (воды). При-этом боковая жидкость пог мещается внизу, а коллоидный раствор — вверху. [c.208]

    Как указывалось выше, щелочи действуют разрушающе на шерсть. В зависимости от концентрации и температуры щелочных растворов в шерстяных волокнах происходят различные физико-химические изменения, вплоть до перехода шерсти в коллоидный раствор. Особенно сильно действуют на шерсть едкие щелочи натрия и калия (МаОН и КОН), причем разрушающее действие повышается с увеличением температуры. Так, например, 3%-ный кипящий раствор NaOH почти мгновенно растворяет шерсть. Даже щелочи в концентрации 0,01 % при температуре 50°С после получасового воздействия на волокно заметно снижают его крепость. Растворы аммиака концентрации до 1 % при температуре 60—70° С приводят к огрублению и разрушению волокна. Газообразный аммиак действует на шерстяное волокно значительно сильнее своего водного раствора. Сода и поташ в концентрации более 1 % в горячем состоянии (температура выше 50° С) также действуют на шерсть. Соли меди, алюминия, железа, цинка частично разлагают шерсть. [c.27]

    Рассмотрим агрегатную форму процесса кристаллизации парафинов. Явление агрегатной кристаллизации наблюдается в основном для высококипящих мелкокристаллических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Высококипящие высокомолекулярные парафины дают при кристаллизации весьма мелкую кристаллическую структуру. По величине образуюпщеся кристаллики парафина приближаются, особенно для многих тяжелых продуктов остаточного происхождения, к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кристалликов парафина, проявляют ряд свойств, присущих коллоидным системам, — нанример аномалию вязкости, дают явления, аналогичные гелеобразованию, и др. К числу таких свойств относится способность микрокристаллической взвеси собираться нри определенных условиях в скопления или агрегаты, как это происходит нри коагуляции коллоидных растворов. Одной из причин такой коагуляции (точнее агрегации) является выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих ч оединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют такж . и электростатические явления. [c.74]

    Растворы полимеров раньше рассматривали как коллоидные растворы (лиофильные золи). Однако в работах Флори, Добри, В. А. Каргина и др. было показано, что эти растворы, в особенности при невысоких концентрациях полимера, должны рассматриваться как обычные растворы, отличающиеся от последних внутренним строением, термодинамическими и другими свой-. ствами, что обусловлено лишь большой величиной и особенностями строения макромолекул полимеров и сильным различием в величине частиц полимера и растворителя. Наиболее отчетливо это проявляется для очень разбавленных растворов. Для этих растворов применимы обычные соотношения, характеризующие зависимость осмотического давления растворов и других свойств от их концентрации, однако все же следует учитывать очень большую величину макромолекул полимера и гибкость цепей. Подвижность отдельных звеньев цепей приводит к тому, что макромолекула может обладать очень большим числом конформаций. Вследствие этого соответственно увеличивается термодинамическая вероятность и, следовательно, энтропия системы. [c.601]

    По размерам частиц дисперсной фазы гетерогенные дисперсные системы подразделяются на грубодисперсные, с размерами частиц больше I мкм, и тонкодисперсные, называемые также коллоидными, с размерами частнц меньше 1 мкм коллоидные системы называют также золями или коллоидными растворами. Гра ица между грубодисперсными и тонкодисперснымн системами услов а, особенно если учесть полидисперсность реальных систем. [c.155]

    Явление агрегатной кристаллизации наблюдается в основном у высококипящих мелкокристалл ических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Как уже отмечалось выше, высококипящие высокомолекулярные парафины образуют при кристаллизации мелкую кристаллическую структуру. По величине образующиеся кристаллики парафина приближаются (особенно для многих тяжелых продуктов остаточного происхождения) к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кргисталликов парафина, характеризуются некоторыми свойствами, присущими коллоидным системам. Например они проявляют аномалию вязкости, способны к явлениям, аналогичным гелеобразованию, и др. К таким свойствам относится и способность микрокристаллической взвеси образовывать в определенных условиях агрегаты, как это происходит при коагуляции коллоидных растворов. Одна из причин такой агрегации — выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих соединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют и электростатические явления. [c.93]

    Сапонины представляют собой весьма распространенные в растениях соединения сложного строения, образующие в воде коллоидные растворы, снижающие поверхностное натяжение воды и, подобно мылам, образующие пену. Они отличаются сильным гемолитическим действием и поэтому при внутривенном введении представляют собой сильные яды. Способность сапонинов понижать поверхностное натяжение, вероятно, обусловила в прошлом применение сапонинсодержащих растений для ловли рыб уже незначительное количество сапонинов убивает рыб. Некоторые сапонины, особенно дигитонин, образуют с холестерином и другими Зр-оксистероидами очень трудно растворимые осадки. [c.889]

    Жидкости чаще всего подчиняются закону внутреннего трения Ньютона. Такие жидкости называют нормальными, или ньютоновскими. Однако в промышленной практике приходится иметь дело и с неньютоновскими жидкостями, обладающими аномальными свойствами. Не следуют закону Ньютона растворы многих полимеров, коллоидные растворы, густые суспензии, пасты и др. Некоторые характеристики неньютсновских жидкостей рассмотрены ниже (стр. 92 сл.) в связи с особенностями их движения. [c.28]

    В главе XX (авторы В. К. Марков и А. Е. Клыгин) изложены данные по поверхностному натяжению и парахору углеводородов. Поверхностное натяжение имеет большое практическое значение, особенно в тех случаях, когда отношение поверхности раздела к объему жидкости велико, как в эмульсиях углеводородов с водой, нри диспергировании углеводородов (например, при впрыске их в двигатель впутреннего сгорания), при испарении мелких капель углеводородов, в коллоидных растворах углеводородов и т. д. Парахор имеет большое значение при анализе смесей углеводородов и нрп онределении строения индивидуальных углеводородов. [c.5]

    Растворимость осадка. -Оловянная кислота практически нерастворима в азотной кислоте, но растворяется в других кислотах, особенно в НС1. Растворимость в соляной кислоте объясняется двумя причинами. Ионы четырехвалентного олова связываются ионами хлора (также ионами Вг , J ) в малодиссоциированные комплексные соединения, например HjSn l . Кроме того, аморфный осадок -оловянной кислоты часто образует коллоидные растворы. Ионы четырехвалентного олова, образующиеся хотя бы в небольшом количестве при действии ионов хлора в кислом растворе, являются пептизатором, облегчающим переход осадка в коллоидный раствор. [c.172]

    Наиболее распространенный вид структурообразования — возникновение рыхлой пространственной сетки за счет преобладания притяжения частиц на расстоянии /г=Ло. Необходимым условием образования такой структуры, называемой коагуляционной, является заметная величина потенциальной ямы (Дб тш АТ ) и концентрация частиц (9 0,01—0,1), достаточная для образования сплошной пространственной сетки (рис. 94,а). Коагуляционная структура способна разрушаться при механических воздействиях (например, при течении) до отдельных частиц (рис. 94,6). Обратимое изотермическое разрушение структуры при механических воздействиях и ее последующее восстановление называется тиксотропивй. Для тиксотропного восстановления требуется некоторое время. Это время особенно велико у гелей (структурированных коллоидных растворов). [c.157]

    Характерной особенностью коллоидных растворов является то, что размеры их частиц могут с течением времени самопроизвольно изменяться они могут уменьшаться — процесс диссолюции (рис. 99, [c.325]

    Наконец, несостоятельность дисперсоидологии особенно ясно выявилась после детального нсследоваия природы растворов полимеров. Согласно Во. Оствальду и другим представителям дисперсоидологии, все коллоидные свойства должны обязательно проявиться у систем, содержащих частицы коллоидных размеров. Однако, как было уже показано, растворы высокомолекулярных веществ, молекулы которых отвечают коллоидным размерам, проявляют только некоторые свойства, типичные для коллоидных систем (оптические, молекулярно-кинетические свойства), в отношении же других свойств они имеют очень мало общего с типичными коллоидными растворами. [c.23]

    Метод Тизелиуса. Этот метод в принципе сводится к методу подвижной границы, однако в нем много специфических особенностей. Измерения по этому методу проводят в приборе, который представляет собою усовершенствованный аппарат Кёна. Для создания резкой,границы между коллоидным раствором и боковой жидкостью в приборе Тизелиуса используют не краны, а сдвиг пришлифованных частей U-образной трубки относительно друг друга. На рис. VII, 25 дан разре основной части прибора, соответствующей U-образной трубке прибора Кёна. Нижняя часть трубки в момент наполнения верхней части боковой [c.208]

    К красителям, проявляющим в растворах все особенности, свойственные растворам коллоидных ПАВ, относится ряд синтетических красителей, например, бензопурпурин, ночной голубой и т. д. Ионогенными группами у коллоидных красителей служат карбоксильные группы, фенольные группы, сульфо-группы, аминогруппы и т. д. Растворы этих красителей сходны с растворами высокомолекулярных соединений — они обладают сравнительно высокой агрегативной устойчивостью, а образующийся при введении электролитов осадок способен диспергироваться в чистой воде. Растворы этих красителей проявляют такие же аномалии в отнощении электропроводности и осмотического давления, как и растворы мыл и таннидов. С. М. Липатов показал, что благодаря большому размеру молекул красителей ассоциация в растворах протекает значительно в большей степени, чем в растворах мыл, и весьма сильно зависит от концентрации, температуры, pH системы, присутствия электролитов и других факторов. Как и мыла, многие красители, дающие коллоидные растворы в воде, в спирте обра зуют молекулярные растворы. [c.415]


Смотреть страницы где упоминается термин Коллоидные растворы особенности: [c.153]    [c.153]    [c.323]    [c.517]    [c.18]    [c.290]    [c.354]    [c.367]   
Курс коллоидной химии (1976) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Основные особенности коллоидных растворов

Особенности коллоидного строения растворов присадок

Растворы коллоидные



© 2025 chem21.info Реклама на сайте