Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анионы удаление с гуминовыми кислотам

    Для обесцвечивания окрашенных вод и осветления природных вод повышенной мутности применяют флокулянты, представляющие собой органические полиэлектролиты. Обработку воды коагулянтами или флокулянтами перед подачей на обессоливание обычно сочетают с ее сорбционной очисткой для удаления органических примесей, а именно, гуминовых и аминокислот, белковоподобных веществ, сахаров [11]. В качестве сорбентов обычно применяют активированные угли и макропористые аниониты. Сорбция гуминовых и фульвокислот идет в кислой среде и на анионите в солевой форме, например, на анионите ИА-1. Для удаления амино- и карбоновых кислот применяют анионит АВ-171. Сахара сорбируют углем БАУ. [c.129]


    Недавно проведена работа по определению механизмов комплексообразования и кажущихся констант нестойкости. Одним из механизмов реакции являлось образование хелат-иона с о-фенольными карбоксильными группами [4—6,46,49,50]. Часто образуется и хелат-ион фталевой кислоты [4, 49—51]. Полагают, что в тех случаях, когда концентрации металлов соответствуют концентрациям в природных водах, вероятно образование первых хелат-ионов [6, 50]. Обнаружено образование смешанных комплексов с разными лигандами, но константы нестойкости оказались близкими для нескольких систем [52, 53]. Исследования показали, что смешанные комплексы, содержащие разные лиганды, обычно более устойчивы, чем комплексы с одним лигандом, даже когда им является нитрилотриуксусная кислота. Это свойство может благоприятствовать удалению анионных загрязняющих веществ, а также объясняет, почему гуминовая кислота в присутствии Ре эффективно удаляет Сг 1 [1]. [c.266]

    Поверхностная адсорбция — наиболее вероятный механизм удаления большинства загрязняющих веществ летучей золой. Это можно предполагать на основании того, что основные компоненты летучей золы — это адсорбенты, часто используемые в жидкостной хроматографии. Летучая зола лучше адсорбирует анионы, чем катионы [25J. Однако некоторые высокозарядные катионы со сродством к гидроксильным группам (например, Ре + и А1 +) тоже хорошо сорбируются летучей золой. Тут происходит взаимодействие с поверхностью гидратированных РегОз и AI2O3. Удаление полиэлектролитов летучей золой аналогично удалению. взвешенных твердых частиц гуминовой кислотой. В обоих случаях твердые частицы связываются полианионами в агрегаты, которые отстаивают или отфильтровывают. Использование летучей золы для очистки воды дает дополнительное преимущество — улучшает фильтруемость осадка [17—19]. [c.268]

    Так как гуминовая кислота имеет анионный характер, а летучая зола -ч катионный, то совместное применение их способствует удалению многих загрязняющих веществ. Однако взаимодействие гуминовой кислоты и летучей золы уменьщает эффект их воздействия, поскольку гуминовая кислота частично растворяет летучую золу и вызывает некоторую дезактивацию летучей золы при адсорбции загрязняющих веществ, но все же некоторые аспекты их совместного применения могут быть полезны при обработке воды. Например, добавление золы способствует флокуляции гуминовой кислоты и ее удалению вследствие значительных количеств Fe + и А1 + в золе. Кроме того, тогда не требуется добавления А12(504)з, РеС1з или других вызывающих флокуляцию веществ. Аналогично, не требуется и добавления анионных полиэлектролитов, которое необходимо при обработке воды летучей золой, так как гуминовая кислота является полианионом. Поскольку очистка воды отдельно гуминовой кислотой и отдельно летучей золой изучены ранее, в настоящей главе рассматривается в основном взаимодействие гуминовой кислоты с летучей золой и определяется оптимальное соотношение этих веществ. [c.269]


    Определение анионных СПАВ. Для колЕчественного определения СПАВ в природных и сточных водах преимущественно используют экстракционно-фотометрические методы, основанные на образовании ионных ассоциатов поверхностно-активного аниона с катионами основных красителей. Широко распространено определение анионных СПАВ в сточных и природных водах с фентиа-зиновым красителем метиленовым синим [11—14]. После извлечения ионного ассоциата хлороформом из щелочной среды органическую фазу промывают кислым раствором реагента (для удаления низкомолекулярных примесей) и фотометрируют нри 670 нм. Вследствие невысокой степени извлечения ионного ассоциата хлороформом (84%) экстракцию проводят несколько раз. Определению мешают сульфид-, полисульфид- и тиосульфат-ионы, которые разрушают перекисью водорода, а также большие количества неионогенных СПАВ. Метиленовый синий образует извлекаемый хлороформом ионный ассоциат и с гуминовыми кислотами, максимум поглощения которого лежит при 550 нм. Мешающее влияние гуминовых кислот можно уменьшить, проводя измерения на спектрофотометре с высокой мопохроматизацией [15]. Интервал концентраций СПАВ, определяемых с метиленовым синим, равен 0,01—0,80 мг1мл нри объеме пробы 250 мл точность определения 2% [12]. [c.235]

    Влияние железа и алюминия при умягчении воды. Хотя содержание железа и алюминия в большинстве вод весьма незначительно, часто присутствующие количества железа могут вызвать ряд затруднений. Присутствие железа и алюминия в воде нежелательно по следующим причинам 1) железо и алюминий могут образовать накипь в паровых котлах 2) эти металлы могут образовать нерастворимые мыла 3) железо может вызывать образование пятен на текстильных товарах и.ли изменение окраски других материалов 4) железо и алюминий могут образовать осадок на слое ионита и таким образом увеличить сопротивление фильтра. Разнообразие форм, в которых железо и алюминий могут находиться в воде, обусловливает отсутствие универсального метода, обеспечивающего удаление железа и алюминия из различных по своему составу вод. Железо может присутствовать в воде в виде Ре 2, Ре" , гидратов окислов двух- и трехвалептного железа и комплексных соединений с гуминовой кислотой. Алюминий может присутствовать в форме ионов алюминия или алюмината или в виде гидрата окиси, который может существовать в форме анионного, катионного или нзоэлектрического коллоида. Во многих случаях большая часть железа и алюминия осаждается на слое ионита и после каждого цикла работы переходит при взрыхлении в водяную подушку. Ион двухвалентного железа легко обменивается на ион натрия и но своему поведению весьма сходен с ионом кальция. Ионы трехвалентного железа или алюминия легко адсорбируются ионитом, но при регенерации растворами хлорида натрия удаляются лишь с трудом. Так как эти ионы могут накапливаться в значительных количествах, необходимо удалять их при помощи регенерации кислотой. Полнота удаления гуминового железа, коллоидных окиси алюминия и окиси железа зависит от анионного состава и pH, так как эти факторы в значительной степени определяют коллоидно-химические характеристики указанных веществ. Эти коллоиды в одних случаях в значительной степени осаждаются на поверхности ионита, однако в других случаях, если не применяются специальные адсорбенты, они легко проходят через слой ионита. Для уменьшения трудностей, создаваемых присутствием железа, предложены [c.87]


Химия промышленных сточных вод (1983) -- [ c.267 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота анионная

Удаление анионов



© 2024 chem21.info Реклама на сайте