Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нагревание высокочастотное индукционное

    При протекании переменного электрического тока по проводнику вокруг последнего образуется переменное магнитное поле. Если в это магнитное поле поместить деталь, обладающую электропроводностью, в детали будет индуктироваться электрический ток. Почти вся мощность индуктируемого тока будет превращаться при этом в теплоту, вызывая нагревание детали. При нагреве деталей в высокочастотных индукционных установках (300 000—500 000 пер/сек) происходит чрезвычайно интересное явление поверхностный слой очень быстро нагревается до высо- [c.30]


    Оплавление покрытий без нагревания изделий в целом требует для своего осуществления специальной аппаратуры, позволяющей получать высокие температуры лишь на небольших участках поверхности. Этому условию удовлетворяет высокочастотный индукционный метод эмалирования [82]. Процесс может быть легко механизирован. Чтобы оплавить покрытие достаточно нагреть лишь поверхностный неглубокий слой металла непосредственно под покрытием с помощью индуктора. Глубина проникновения б индуктированного тока в металл равна [c.66]

    В зависимости от способа превращения электрической энергии в тепло различают нагревание электрическими сопротивлениями (омический нагрев), индукционное нагревание, высокочастотное нагревание, а также нагревание электрической дугой. [c.322]

    Такое устройство позволяло быстро и многократно замерять температуру в шести точках основной зоны печи. Нижней точкой замера температуры служил диск//, па который устанавливался нагреватель. Температура этого диска была 2000° С. Температурная характеристика представлена на рис. 3. Для сравнения на рис. 4 дана температурная характеристика по высоте тигля — экрана (графитового) промышленной высокочастотной индукционной печи. Из представленных результатов видно, что распределение температуры по высоте реакторной зоны в печи ПКН более равномерно, чем в индукционной. Таким образом, при нагревании изделие будет иметь более равномерную температуру по всему объему. [c.70]

    Для нагревания в широком диапазоне температур применяется электрический нагрев. Электрические нагреватели удобны для регулирования, обеспечивают создание хороших санитарно-гигиени-ческих условий, но относительно дороги. В зависимости от способа преобразования электрической энергии в тепловую применяют электропечи сопротивления, индукционный нагрев, нагрев токами высокой частоты и электродуговой нагрев. В электропечах сопротивления преобразование энергии осуществляется через жаростойкие проводники с высоким удельным электрическим сопротивлением. Индукционный нагрев основан на использовании теплоты, выделяющейся за счет вихревых токов Фуко, возникающих под действием переменного магнитного поля. Этот метод обеспечивает равномерный нагрев, но дорог. Высокочастотный нагрев основан на превращении в теплоту энергии колебания молекул диэлектриков в переменном электрическом поле. Он обеспечивает равномерное нагревание материала по всей толщине. Однако из-за необходимости применения довольно сложной аппаратуры с низким коэффициентом полезного действия этот метод дорог и используется лишь в производствах ценных высококачественных материалов. Электродуговой нагрев основан на использовании электродуго- [c.362]


    Нагревание образца осуществляется путем прямого омического нагрева, бомбардировкой электронами, высокочастотным (индукционным) нагревом или действием интенсивного светового пучка. Если применяется прямой омический нагрев, поперечное сечение образца не должно превышать 1—2 мм , чтобы ток накала не достигал трудноконтролируемого значения. Следует использовать переменный ток, поскольку постоянный ток вызывает, как известно, фасетирование поверхности (в частности, вольфрамовой проволоки) [11, 16]. Этот процесс, наблюдаемый только нри температурах ниже 2200 К, происходит, вероятно, из-за поверхностной миграции ионов вольфрама к отрицательному полюсу проволоки и вследствие преимущественной диффузии сопровождается образованием граней 110 ив меньшем количестве граней 112 и 111 . [c.124]

    Одним из важных методов повышения качества-клеевых соединений и ускорения процессов склеивания является индукционный нагрев. Нагревание склеиваемых деталей происходит за счет наведения индукционных токов внутри материала с помощью высокочастотных генераторов, частота и мощность которых подбираются в зависимости от типа металла, массы материала и размеров соединяемых поверхностей. При более высоких частотах тепло может выделяться на поверхности склеиваемых деталей, при низких частотах (для металлов) наблюдается более глубокий разогрев. [c.89]

    В пиролизерах индукционного нагрева токами высокой частоты до точки Кюри, питание которых осуществляется от высокочастотного генератора средней мощности (30-200 Вт), нагревание ферромагнитного держателя и пробы происходит значительно быстрее и время подъема температуры ту- составляет 0,5-2,0 с (рис. 8,А, кривая 2). При использовании в пиролитических устройствах по точке Кюри более мощных [c.47]

    Пиролиз при температуре Кюри. Очень высокая скорость нагревания достигается при индукционном нагревании ферромагнитного материала (рис. 3.4). Например, смесь пробы с железным порошком, помещенная в высокочастотное электрическое поле, нагревается до высокой температуры за несколько секунд [3.39]. Нагревание можно ускорить, если пленку анализируемого образца нанести на тонкую железную проволоку. В этом случае нагревание можно проводить в потоке газа-носителя, который затем подают в хроматограф. [c.48]

    В некоторых случаях образец взвешивают в маленьких металлических контейнерах, сделанных из сплава, который плавится при температуре пиролиза. В отдельных приборах пиролиз проводится с помощью высокочастотной индукционной печи, в чем есть свои преимущества, поскольку стенки трубки для сжигания меньше подвергаются воздействию высокой температуры, однако имеются и недостатки, связанные с трудностью регулирования процесса нагревания. [c.530]

    Индукционное нагревание слоя из металлических элементов соленоидом, окружающим рабочий участок. Тепловой поток определяется по нагреванию газа. Трудности осуществления этого метода связаны с необходимостью обеспечения равномерного тепловыделения в слое и определения средней температуры поверхности зерен, в которых циркулируют высокочастотные электрические токи. [c.144]

    Ионизация газа и предварительное нагревание плазмы производятся продольным током, который возбуждается в камере индукционным путем. Чтобы предотвратить возникновение тока в металлической- оболочке камеры, в ней делается поперечный разрез, в который вставляется кольцо из термостойкого диэлектрика. В одном из прямолинейных участков камеры должны размещаться устройства, создающие высокочастотное поле, которое выполняет основную функцию нагревания. Другой прямолинейный участок служит для. размещения дивер-тора, который уменьшает взаимодействие плазмы со стенками и не дает атомам примесей проникнуть в глубь плазменного шнура. [c.363]

    Термические методы очистки. Термический метод очистки основан на использовании различия в температурных коэффициентах расширения металла-основы и поверхностного соединения. При быстром нагревании в слое окалины в результате ее расширения возникают внутренние напряжения сжатия, вызывающие растрескивание и отслаивание окалины. Быстрое нагревание может быть осуществлено либо высокотемпературным пламенем газовой горелки, либо применением индукционных и высокочастотных. нагревательных установок. [c.96]

    По способу превращения электрической энергии в теплоту различают нагревание сопротивлением, электрической дугой, индукционное и высокочастотное нагревание. [c.218]

    Другие возможности создания растягивающих напряжений, исследуемые в различных лабораториях 1) индукционное нагревание для разрушения породы посредством испарения содержащейся в породе воды или за счет различного линейного расширения минералов, составляющих куски 2) применение высокочастотной вибрации для разрушения с помощью резонанса  [c.198]

    Для целей откачки пригодны устройства, описанные в главе V. Более совершенными приборами для нагревания и плавления металлов в вакууме являются индукционные высокочастотные печи. [c.34]


    Высокочастотное нагревание часто обеспечивает даже еще более быстрое высушивание. Так, древесная мука высыхает за 4—6 мин [201]. Яндасек [199] использовал высокочастотное нагревание для определения влажности бурого угля и кокса, воспроизводимость результатов анализов была несколько лучшей, чем при азеотропной отгонке воды с ксилолом. Диэлектрическая проницаемость сухого бурого угля равна 5 и увеличивается пропорционально содержанию воды. В процессе индукционного нагревания градиент температуры устанавливается таким образом, что температура понижается в направлении к поверхности образца. При этом по мере удаления воды уменьшается интенсивность генерируемого тепла и, следовательно, уменьшается возможность перегрева и окисления анализируемого образца. Яндасек [199] рекомендует перед высушиванием равномерно распределять пробу массой 10 г на куске фильтровальной бумаги диаметром 12 см и [c.84]

    Были поставлены специальные эксперименты для изучения возможности применения капельной жидкости (в частности, обычной водопроводйой воды, обладающей некоторой электропроводностью) в качестве среды при индукционном нагреве частиц При этом проверяли нагревание воды непосредственно от воздействия высокочастотного магнитного поля. При наблюдении за температурой воды при длительном прохождении ее по реактору и наличии высокочастотного магнитного поля, напряженность которого менялась в широких пределах, видимого изменения температуры не было обнаружено. Проведенные расчеты также подтверждают отсутствие влияния магнитного поля на воду как охлаждающую среду. Действительно, согласно [5], количество энергии Р, выделившейся в единице объема воды, определяется по формуле [c.49]


Смотреть страницы где упоминается термин Нагревание высокочастотное индукционное: [c.138]    [c.146]    [c.349]    [c.460]    [c.194]   
Экспериментальные методы в неорганической химии (1965) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Нагревание



© 2025 chem21.info Реклама на сайте