Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные цвета точки цветности

    Фундам. характеристикой цвета, его качеством, является цветность, к-рая не зависит от абс. величины цветового вектора, а определяется его направлением в цветовой координатной системе. Поэтому цветность удобно характеризовать положением точки пересечения этого вектора с цветовой плоскостью, к-рая проходит через три точки на осях основных цветов с координатами цвета, равными 1. [c.330]


    Углы треугольника представляют собой точки цветностей (В), (С), (В) основных цветов К, а, В, а 5 является точкой цветности цвета 8 с координатами цветности г, Ь. [c.73]

    С отрицательными значениями цветовых координат неизбежно приходится сталкиваться в цветной фотографии и полиграфии, а также в цветном телевидении. Любой цвет, входящий в цветовой охват конкретных основных цветов системы (например, красного, зеленого и синего), может быть определен как сумма (смесь) положительных количеств основных цветов. Цветовой охват ограничен в пространственной интерпретации тремя плоскостями (Е = О, С = О и 5 = 0), которые пересекаются с единичной плоскостью по прямым, образующим три стороны треугольника, показанного на рис. 1.15. Любой цвет 8 Е, С, В) входит в этот охват, если точка его цветности 5 (г, g, Ь) расположена внутри цветового треугольника на единичной плоскости. Одна или две координаты цвета (и, следовательно, одна или две координаты цветности) становятся отрицательными, как только цвет 8 выходит за пределы цветового охвата системы. На рис. 1.17 изображены цвет 81, заключенный внутри цветового охвата системы, и цвет 82, находящийся вне его. Для определения цветов, выходящих за пределы цветового охвата системы, необходимо использовать отрицательные значения цветовых координат. Например, в случае показанного на рис. 1.17 цвета 82 значение координаты О отрицательно. [c.74]

    Точки (Р), (Л), (Г) представляют цветности основных цветов при дихроматическом зрении, играющих важную роль в некоторых теориях цветового зрения. [c.163]

    Приведенные координаты являются координатами цветности основных цветов при дихроматическом зрении они играют, как уже было показано, важную роль в развитии некоторых теорий цветового зрения. Точное положение этих точек цветности неизвестно, и поэтому иногда используются, особенно для (В), другие наборы точек. Координаты, предложенные Питтом [529] и использованные при выводе уравнения (1.18), аналогичны вышеприведенным, за исключением (О), для которого Питт дает значения х = 1,081 и уа = —0,081. [c.165]

    Линии одинаковой насыщенности по Манселлу могут быть рассчитаны путем интерполяции для любого промежуточного значения светлоты между 1/ и 9/ (рис. 2.62). Между значениями светлоты 9/ и 10/ (идеальный белый) линии насыщенности можно достоверно определить методом экстраполяции. Следует отметить, что для значений светлоты 7/, 8/ и 9/ различие между линиями насыщенности по Манселлу невелико. Линии цветности тщательно выверены для всего интервала светлоты от значения 9/ до 10/. Основное различие между ними заключается в непрерывном сокращении линии цветности для оптимальных цветовых стимулов по мере приближения к значению светлоты 10/ (У = 100). Для совершенного отражающего рассеивателя возможна только одна цветность— цветность самого источника, так что линия оптимальных цветов при светлоте по Манселлу, равной 10/, сводится к одной точке цветности (представляющей стандартное излучение С МКО). [c.301]


    Цвета спектра, отложенные на диаграмме, образуют локус (линию цветностей спектральных излучений), каждая точка которого имеет одну отрицательную координату для случая, когда основными являются спектральные цвета трех различных длин волн. Трудно представить себе отрицательное количество цвета, но это просто значит, например, что некоторое количество основного красного цвета предварительно смешивается с зеленым и синим цветом, прежде чем результирующий цвет будет воспроизводиться смешением двух других основных цветов, т. е. [c.120]

    Примерно аналогичные требования предъявляются и к цветной фотографии. Там для идеального цветовоспроизведения вместо трех цветоделенных негативов требуется шесть. Три из них, соответствующие отрицательным ветвям, должны были бы выполняться в виде позитивов, что при совмещении их с основными негативами обеспечивало бы коррекцию цвета при обращении основных негативов в позитивы. В цветной фотографии иногда используют один или два корректирующих позитива (называемые масками) несмотря на то обстоятельство, что циановый, фуксиновый и желтый красители, применяемые для регулировки количества красного, зеленого и синего излучений, меняют свою цветность с изменением количества красителя. Этот метод известен, как метод маскирования [262]. Однако маски в цветной фотографии обычно имеют спектральную чувствительность, соответствующую положительным ветвям двух остальных кривых сложения, т. е. их изготавливают [c.278]

    Стандартные образцы, определенные в основной системе. Если выбранный цвет имеет постоянное значение, то можно с надежной гарантией измерить в основных характеристиках любые специальные стандартные образцы цвета, разработанные для его контроля. Это позволяет в любое время воспроизвести выбираемые стандарты цвета, а также установить предполагаемый интервал цвета в основных характеристиках, используемых в колориметрии. Этот интервал может быть выражен в системе координат МКО (например, координатами цветности х, у, коэффициентом яркости У МКО 1931 г. по отношению к стандартному излучению Г)е5 МКО). Кроме того, область цветов может быть определена характеристиками любой системы координат, полученной из стандартной системы МКО, такой, как система, основанная на доминирующей длине волны и чистоте (см. рис. 2.27). Она может быть выражена даже в виде цветовых различий АЕ, определенных, например, по уравнению (2.73). Более подробно об этом будет говориться позже. [c.388]

    Метод МКО [99] очень хорошо согласуется с отмеченными выше требованиями. Он является в основном методом сдвига цвета, так как с его помощью рассчитываются средние колориметрические сдвиги на равноконтрастном цветовом графике МКО 1960 г. для ряда исследуемых предметов по отношению к исследуемому и стандартному источникам излучения той же цветности. Считается, что набор из восьми образцов атласа Манселла различного цветового тона, средней насыщенности и светлоты обеспечивает удовлетворительное представление охвата практически важных цветов предметов. Спектральные коэффициенты отражения образцов приведены в таблице, данной в публикации МКО [99]. Дополнением к основному набору из восьми образцов являются еще шесть образцов из атласа Манселла с более высокой насыщенностью. Их используют в особых случаях. [c.409]

    Хромофорная теория Витта сыграла важную роль в последующем развитии теории цветности. Понятия о хромофоре и ауксохроме, расширенные и дополненные электронной и квантовомеханической теорией, весьма полезны и в настоящее время для понимания цвета органических соединений. (Однако фиксирование красителя на волокне производится ауксохромом лишь в той степени, в которой он обусловливает основные или кислотные свойства красителя.) [c.552]

    В некоторых растворах на поверхности твёрдых тел, с ними контактирующих, может образоваться мономолекулярный слой растворенного вещества. Образовавшись, этот слой в дальнейшем не увеличивается. Подобное явление, называемое наслаиванием , может вызывать определённые затруднения при спектрофотометрических исследованиях. При проведении анализов в кювете с мономолекулярным слоем оказывается увеличенной характеристика интенсивности цвета, искажаются и цветовые характеристики (рис. 6.7). Раствор синего красителя анализируется дважды, сначала в чистой сухой кювете, и повторно после образования на стенках кюветы слоя растворённого вещества. Коэффи циент поглощения во втором случае увеличился на 1,7%, в то же время влияние его на цветовые характеристики незначительно. Однако если бы в той же кювете анализировался жёлтый краситель, влияние наслаивания на цветность было бы значительно больше. Вышеупомянутый эффект присущ не только основным красителям, но у данного класса красителей он, вероятно, проявляется особенно часто. [c.167]

    Чтобы установить положение точки 5 на графике цветности (и тем самым определить цветность вектора 8), мы вводим координаты цветности г, g, Ь(рис. 1.16). Приизучении рис. 1.14 и 1.15 становится очевидным, что углы треугольника, изображенного на рис. 1.16, представляют собой пересечения осей основных цветов с единичной плоскостью. Они образуют систему отсчета на графике цветности, а их координаты цветности г, g, Ъ задаются координатами (1, О, 0), (О, 1, 0) и (О, О, 1) для красного (/ ), зеленого (б ) и синего (В) цветов соответственно. Координаты г. [c.72]


    Ориентация.осей основных цветов выбрана так, чтобы единичная плоскость (X - - у - - 2 = = I) в положительном квадранте давала прямоугольный треугольник, называемый графиком вдетности. Цвет 8 пересекает единичную плоскость в точке 3, именуемой точкой цветности ее положение определяется координатами даетности ж, у. [c.86]

    При выборе рабочих основных цветов для трехцветиого колориметра, естественно, стремятся к воспроизведению как можно большего числа цветов. Было показано, что невозможно получить все цвета путем аддитивного смешения трех стимулов с фиксированными цветностями, однако достижение по возможности наибольшего цветового охвата является существенным преимуществом любого колориметра. Если выбрать две цветности у краев спектра, а третью — у средней (зеленой) его части (520 нм), то можно получить цветовой охват, близкий к максимальному (рис. 2.32). Можно отметить, что при таком выборе основных цветов в цветовой охват ие попадают чистые желтые и чистые сине-зеленые цвета. [c.223]

    Реакции колбочек В, С, В относятся к фундаментальным цветам и могут быть связаны с координатами цвета X, У, X МКО простым линейным преобразованием (1.18). Гельмгольц проверял свой линейный элемент, предсказывая едва заметные различия в ощущении цветности спектральных цветов и сравнивая свои результаты с измерениями Кёнига и Дитеричи [368]. Согласие было весьма удовлетворительным. К тому же, чтобы достичь такого согласия, необходимо было без доказательств принять фундаментальную систему основных цветов, что совершенно неразумно с точки зрения физиологии. Каждая из трех спектральных функций, соответствующих этим основным цветам, имела два явно выраженных максимума, что противоречит данным Кёнига. Кроме того, Шредингером [588, 589] было показано, что функция относительной спектральной световой эффективности (рис. 1.2, колбочки) для согласия с линейным элементом Гельмгольца должна иметь два максимума. [c.377]

    Основные цвета фундаментальной системы, соответствующие чувствительным к фиолетовому и красному цветам колбочковым механизмам, постулированным в теории Юнга — Гельмгольца, считаются достаточно хорошо известными, в то время как оставшийся основной цвет, соответствующий колбочковому механизму, чувствительному к зеленому цвету, в некоторой степени не определен, поскольку речь идет о его обозначении в координатах цветности (х, у) МКО. Если принять в качестве основных цветов те, которые были предложены Джаддом, можно выразить координаты цвета Е, Q, V через значения координат цвета X, У, X МКО [330]  [c.403]

    По одной из этих схем первичную информацию об объекте несет какая-либо функция, например оптическая плотность одноцветного изображения. Область значений этой функции разбивается на участки согласно той или иной системе квантования, и каждому участку соответствует определенное соотношение трех основных цветов, т. е. определенный цвет изображения. В таких устройствах видеосигнал квантуется на несколько уровней, и каждому уровню видеосигнала соответствует определенный сигнал, управляющий цветностью изображения. Основное достоинство этой схемы — широкие функциональные возможности использования электронной аппаратуры. Метрологические характеристики такой схемы невысоки из-за большого числа пороговых и ограничивающих устройств. Нестабильность данных элементов приводит к погрешности преобразования. Увеличение шагов квантования видеосигнала усложняет и удорожает электронную аппаратуру. [c.237]

    В крепкой серной кислоте аминоазокрасителн дают характерные цветные растворы окраска их изменяется последовательно при разбавлении водой. Весьма вероятно что азогруппа принимает участие в образовании многокислотных солей. В большей части случаев цвег раствора аминоазокрасителн в крепкой серной кислоте совпадает с цветом раствора в той же кислоте соответствующего хромогена. Вступление новых аминогрупп, разумеется, повышает основность. Но понижение цветности зависит в значительной степени от положения аминогрупп по отношению к хромофору. В ряду  [c.134]

    Решающим неудобством является не высокая стоимость колориметров или трудность получения результатов в стандартной колориметрической системе, а их малая чувствительность. Кажется парадоксальным, что колориметр, в котором равенство устанавливается глазом, может быть менее чувствительным, чем невооруженный глаз. Разница в данном случае составляет 500% или в 5 раз. Основным методом контроля цвета промышленных изделий является бинокулярное наблюдение большого поля на светлом фоне. В визуальном трехдветном колориметре наблюдение слабо освещенного поля небольшого размера на темном фоне производится обычно одним глазом через небольшое отверстие. Малый угловой размер поля зрения является серьезной помехой как уже было показано (рис. 2.19), неточность установки равенства по цветности резко увеличивается с уменьшением углового размера поля. Даже при наличии трехдветного колориметра с широким цветовым охватом и большим полем зрения, например размером 10—15°, все равно было бы трудно получить точное цветовое равенство при контроле промышленного изделия (например, пластикового покрытия электровыключателей) из-за появления четко различимого пятна Максвелла, вызванного значительным метамеризмом полей колориметра. В смеси поля сравнения преобладает энергия в длинноволновой, средней и коротковолновой частях спектра (красной, зеленой, синей) по сравнению с промежуточными длинами волн (желтые и сине-зеленые цвета). Для излучения, отраженного от промышленных изделий, такое распределение знергии не характерно. Поэтому увеличение размера поля свыше 2° нежелательно. Неточность уравнивания по цветности составляет 0,005 по а и г/, в то время как при прямом сравне-чии двух пластиков почти идентичного цвета легко обнаруживается разница в 0,001 ло х и у. Поэтому общий случай заключается в установке при измерениях на трехцветном колориметре идентичности цвета двух сравниваемых изделий, в то время как даже случайное прямое сравнение обоих этих изделий невооруженным глазом (особенно когда различия по спектру носят простой [c.225]

    Центр цветности этого иона находится у центрального атома, отмеченного точкой. В результате введения ауксохромных групп катионы стабилизируются, т.е. их основность возрастает и параллельно углубляется и усиливается цвет. Подобное явление наблюдается, например, в парарозанилине, изображаемым, согласно этой теории, как производное трифенилметильного катиона. Формула II передает более точно поведение молекулы, чем хиноидная формула, ввиду того что она выражает тождественность всех трех КНг-грунп и всех трех бензольных ядер, тогда как хиноидная формула указывает на различие одного из ядер с двумя остальными, не наблюдаемое на опыте. [c.554]

    Существуют другие разделы оргаиической химии и химической технологии, имеющие также существенное практическое значение,— разделы, в которых вести исследовательскую работу без аппарата современной электронной теории крайне затруднительно. Я имею в виду, нанример, химию красителей и, в частности, химию сенсибилизирующих гграсите-лей, которой я сам занимаюсь. Должен сказать, что работать в области синтеза новых цианиновых красителей, фотосенсибилизаторов, без использования теории электронных смещений, изложенной в докладе, по моему мнению, в настоящее время просто невозможно. Чтобы синтезировать сенсибилизатор к определенной зоне спектра, необходимо знать связь, существующую между строением красителя н его цветом. Современная же теория цветности построена на смещении электронов от ауксохромных групп на цепь сопряженных связей. Если бы мы не располагали в химии красителей теорией цветности, т. е. х лавным образом теорией электронных смещений по цепям котгьюгации, мы были бы обречены на чистую эмпирию, удачный случай в синтетических поисках эффективных красителей, без какой-либо направляющей идеи. К счастью, это не так. Теория цветности в органической химии весьма несовершенна, но она существует. Сказанное относится не только к цвету цианиновых красителей, но и к их активности в качестве сенсибилизаторов. Мы знаем теперь, благодаря главным образом И. И. Левкоеву, что эффективность сенсибилизатора зависит от ряда факторов, в том числе от степени основности его молекулы. Если в молекулу цианинового красителя ввести группу — акцептор электронов, то вместо сенсибилизаторов получатся десенсибилизаторы. [c.177]


Смотреть страницы где упоминается термин Основные цвета точки цветности: [c.73]    [c.161]    [c.16]    [c.282]    [c.355]    [c.16]    [c.178]    [c.415]    [c.415]   
Цвет в науке и технике (1978) -- [ c.162 , c.163 ]




ПОИСК







© 2025 chem21.info Реклама на сайте