Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрическая энергия, превращение

    Печи с электротермическим источником теплогенерации (печи электрические) подразделяются по способу превращения электрической энергии в тепловую — сопротивления, дуговые, дуговые печи сопротивления, электроннолучевые и индукционные. [c.14]

    Для промышленного производства электрической энергии на тепловых электростанциях также используется химическая энергия реакции взаимодействия окислителя (кислорода воздуха) с восстановителем (топливо). Однако в этом случае превращение энергии идет сложным путем химическая энергия превращается сначала в теплоту, затем в механическую и лишь после этого — в электрическую энергию. Максимальная электрическая работа, получаемая при таком превращении, определяется тепловым эффектом реакции (Qp = AЯ)  [c.602]


    Печная установка представляет собой сложный агрегат, состоящий из собственно печи и вспомогательного оборудования, причем все элементы печной установки взаимно связаны в работе. К этим элементам относятся собственная печь — реактор, установки для сжигания топлива (топки, горелки и т. д.) или агрегаты превращения электрической энергии в тепловую соединительные части (дымоходы и трубопроводы) приборы для управления гидравлическим режимом печи (шибера, задвижки и др.). [c.34]

    Согласно определению, данному электрохимическим системам, в них происходит взаимное превращение энергии химических реакций и электрической энергии. Пусть з электрохимической системе обратимо и изотермически совершается химическое превращение VA А + Vв В +. .. = -Ь + УМ +. .. (47) [c.19]

    В электрическом поле частотой 10 —10 гц в резиновых смесях наблюдаются максимумы диэлектрических потерь. За счет рассеяния электрической энергии (превращения ее в тепловую) резиновые смеси разогреваются. Заготовка изделия, будучи помещена между обкладками конденсатора, питаемого генератором токов высокой частоты, может достаточно равномерно разогреваться по массе всего изделия, если состав изделия и рецептуры резиновых смесей в нем резко не отличаются друг от друга по диэлектрическим свойствам. Происходит разогрев изделия внутренними источниками тепла и рассеяние тепла теплопроводностью, т. е. изделие оказывается внутри более нагретым, чем снаружи [c.204]

    В связи с открытием все новых и новых сфер проявления электрохимических закономерностей представляется целесообразным и современным несколько видоизменить определение электрохимии как науки, изучающей взаимное превращение химической и электрической энергии. [c.9]

    Электрохимическая система, в которой за счет внешней электрической энергии совершаются химические превращения, называется электролизером или электролитической ванной (рис. 2, в). Электрод, принимающий электроны от участников реакции, называется анодом. Электрод, отдающий электроны участникам реакции,— катодом. Часть электролита, примыкающая к аноду, называется анолитом] примыкающая к катоду — католитом. [c.13]

    Разряд аккумулятора сопровождается превращением химической энергии в электрическую, причем активные вещества переходят в продукты разряда заряд аккумулятора, наоборот, превращает электрическую энергию в химическую, а продукты разряда — в первоначальные активные вещества. [c.865]

    Промышленное производство алюминия — только один из многих процессов, в котором используется электричество. Очень многие продукты химической промышленности получают с помощью электролиза. Электролиз - это использование электрической энергии для произведения химических превращений. [c.534]


    В электрохимических системах происходит взаимное превращение энергии химических реакций в электрическую энергию и обратно. Применение законов термодинамики к электрохимическим системам позволяет рассчитать значения равновесных электродных потенциалов и э. д. с. электрохимических цепей. Для обратимой реакции [c.476]

    Электрическая энергия, вырабатываемая элементом (или цепью элементов), равна полезной работе А суммарного процесса, протекающего в элементе, который мы рассматриваем как термодинамическую систему. Полезная работа Л, процесса максимальна н равна убыли изобарного потенциала системы —AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.), протекающими обратимо. В том случае, когда процесс является обратимым, можно, заставляя элемент работать при почти полной компенсации его э.д.с. внешней разностью потенциалов, т. е. заставляя его находиться бесконечно близко к равновесию (этому состоянию и соответствует измеренная величина ), вычислить изменение изобарного потенциала системы AG через измеренную э.д.с..  [c.527]

    Если окислительно-восстановительную реакцию осуществить так, чтобы процессы окисления и восстановления были пространственно разделены, и создать возможность перехода электронов от восстановителя к окислителю по проводнику (внешней цепи), то во внешней цепи возникнет направленное перемещение электронов —электрический ток. При этом энергия химической окислительно-восстановительной реакции превращается в электрическую энергию. Устройства, в которых происходит такое превращение, называются химическими источниками электрической энергии, или гальваническими элементами. [c.176]

    При некоторых реакциях наблюдается выделение или поглощение лучистой энергии. Обычно в тех случаях, когда при реакции выделяется свет, внутренняя энергия превращается в излучение не непосредственно, а через теплоту. Например, появление света при горении угля является следствием того, что за счет выделяющейся при реакции теплоты уголь раскаляется и начинает светиться. Но известны процессы, в ходе которых внутренняя энергия превращается в лучистую непосредственно. Эти процессы носят название холодного свечения или люминесценции. Большое значение имеют процессы взаимного превращения внутренней и электрической энергии (см. 98). При реакциях, протекающих со взрывом, внутренняя энергия превращается в механическую — частью непосредственно, частью переходя сперва в теплоту. [c.166]

    Теплоту (тепловой поток) (Вт), полученную при сжигании топлива или при превращении электрической энергии в тепловую за единицу времени (например, секунду), подсчитывают по формулам [c.47]

    Электротермический источник — теплота, полученная в результате преобразования электрической энергии. По способу преобразования электрической энергии в теплоту электротермические источники подразделяются на следующие виды джоулева теплота теплота дугового электрического разряда теплота превращения кинетической энергии ускоренных электронов при резком торможении индукционный и диэлектрический нагрев смешанный нагрев. [c.52]

    Затраты на передел исходных материалов — это денежное выражение затрат на получение единицы продукта из печного комплекса. По данному показателю экономическая эффективность печных комплексов может быть достигнута 1) экономией энергетических ресурсов (топлива и электрической энергии) при осуществлении термотехнологических процессов 2) совершенствованием термотехнологических процессов в части получения качественного продукта, полноты проводимых физических и химических превращений исходных материалов, получения качественных побочных продуктов, находящих сбыт 3) увеличением срока эксплуатации печей за счет качественного выполнения футеровочных и монтажных работ  [c.123]

    Такое превращение электрической энергии в тепловую сравнимо только с превращением энергии при запуске ракет. Интенсивное разрушение реакционной трубы из-за очень больших скоростей и наличия твердых частиц сажи требует ее замены уже после 200 ч работы, тогда как верхний электрод из меди меняют после 1000—2000 ч работы. [c.113]

    Электрохимическими называются процессы, которые связаны с превращением электрической энергии в химическую или химической в электрическую. [c.223]

    Гальванические элементы, в том числе и упомянутые выше, не могут служить источниками электрического тока в течение длительного срока. Электрическая энергия в элементе возникает за счет энергии химических процессов, а запас последней, естественно, ограничен массой веществ, подвергающихся в данной системе превращению. Однако способность системы выступать в качестве источника электрического тока можно восстановить, если через разряженную батарею пропускать ток от внешнего источника. Такие гальванические батареи обратимого действия называют аккумуляторами. [c.82]


    Представим себе зону технологического процесса в виде некоторой емкости, заполненной материалом с начальной массой М-а. Э(нергия для совершения технологического процесса получается за счет превращений в самой массе, а также путем введения в зону технологического процесса топлива Т и электрической энергии Э. В течение технологического процесса часть массы материала и топлива в виде газообразных продуктов удалится из зоны технологического процесса Му остаток будет представлять собой конечную продукцию Мк технологического процесса. [c.44]

    Превращение электрической энергии в тепло внутри тела приводит к изменению его энтальпии. Показателем энтальпии тела является его температура, которая в свою очередь при условии термодинамического равновесия согласно закону Максвелла однозначно связана со средней кинетической энергией элементов тела (молекул, атомов, электронов). [c.201]

    Количественное соотношение между химическим превращением вещества на электродах и электрической энергией определяется законами Фарадея. [c.37]

    Электрохимия занимается изучением г акономерностей, связанных с взаимным превращением химической н электрической форм энергии. Химические реакции сопровождаются обычно поглощением или выделением теплоты (тепловым эффектом реакции), а не электрической энергии. В электрохимии рассматриваются реакции, или протекающие за счет подведенной извне электрической энергии, или же, наоборот, служащие источником ее получения такие реакции называются электрохимическими. Следовательно, электрохимические реакции с энергетической точки зрения не идентичны химическим, и в этом одна из причин, по которым электрохимия должна рассматриваться как самостоятельная наука. [c.9]

    В результате этих особенностей энергетические эффекты химических процессов проявляются в форме теплоты. Чтобы энергетические изменения, соответствуюи1ие химическому превращению, проявлялись в виде электрической энергии, т. е. чтобы происходил электрохимический процесс, необходимо изменить условия его протекания. [c.10]

    Электрохимическая система, производящая электрическую энергию за счет протекающих в ней химических превращений, называется химическим источником тока или гальваническим элементом (рис, 2, б). Здесь электрод, пос1>1лающий электроны во внешнюю цепь, называется отрицательным электродом или отрицательным полюсом элемента. Электрод, принимающий электроны из внешней цепи, называется положительным электродом или положительным полюсом элемента. [c.13]

    При электрохимическом образовании новой фазы в отличие ог обычных фазовых превращений ее энергетический уровень не обязательно должен быть ниже уровня исходной фазы, т. е. процесс может совершаться и в направлении увеличения энергии системы, которая поставляется в форме электрической энергии. Направление перехода в этом случае определяетс я не столько температурой и давлением, сколько величиной и знаком электродного потенциала. [c.333]

    После того как произойдет зарядка свинцового аккумулятора, его можно перезарядить, приложив к нему внеишее напряжение, которое превысит его собственную э. д. с., т. е. 2 В в расчете на каждый элемент батареи. Это приводит к обращению реакций, указанных в подписи к рис. 19-7, в результате чего сульфат свинца превращается в свинец и оксид свинца. Если бы по мере разрядки аккумулятора сульфат свинца осаждался на дно бака, обратная реакция оказалась бы невозможной. Однако этого не происходит сульфат свинца остается на свинцовой решетке, готовый к обратному превращению. Это и делает свинцовую аккумуляторную батарею удобным устройством для запасания электрической энергии в форме химической свободной энергии. [c.170]

    Тепловая энергия, получаемая в нечи, должна покрывать ее расходы при работе печей. Тепловая энергия в печах состоит из тепловой энергии, расходуемой непосредственно для проведения химического или физико-химического превращения материалов, и тепловой энергии, компенсирующей потери (с продуктами, отходящими газами и через футеровку). В печах используется тепло, полученное от сжигания топлира и от преобразования электрической энергии в тепловую, и тепло от экзотермических реакций. [c.13]

    Перекрестная технологическая связь (см. рис. 1-8, д) обеспечивает более эффективное использование энергии ХТС. Так, тепло газообразных продуктов химической реакции или отходящих газов можно использовать для предварительного нагрева сырья, поступающего в технологический оператор химического превращения. В ХТС, где технологические процессы протекают при высоких давлениях, для снижения расхода электрической энергии, преобразуемой в механическую, вводят перекрестные связи это позволяет использовать энергию сжатых газов или жидкостей, находящихся под давлением. [c.29]

    При рассмотрении химических реакций, протекающих в электрических разрядах, а такл о под действием ионизирующих излучений мы сталкиваемся с ионизованным 1 агои. Химическая роль ионизации, однако, в этих двух случаях весьма разли Н . 13 области электрического разряда средняя энергия электронов обычно 1аметно ниже потенциала понпаяции молекул. Поэтому ионизация электронным ударом в разряде, будучи необходимой для поддержания разряда, дла введения электрической энергии в газ, обычно дает малый вклад в совокупность химических превращений. [c.173]

    По направлению взаимного превращения электрической и химической форм энергии различают две группы электрохимических си- стем. При электролизе за счет внешней электрической энергии возникают химические реакции. Переход энергии химического процесса в электрическ.ую осуществляется в химических источниках тока (галь-ванические элементы, аккумуляторы). [c.454]

    Химическими источниками тока (ХИТ) называются устрейства, посредством которых свободная энергия пространственно разделенных окислнтельно-юсстановительных процессов превращается в электрическую энергию. Процесс превращения химической энергии в элеК трическую в химическом источнике тока называется разрядом. [c.865]

    По способу превращения электрической энергии в тепловую различают электрические печи сопротивления индукционные и дуговые. Электрические печи сопротивления делятся на нечи прямого действия и печи косвенного действия. [c.172]

    Уравнение (1.2) выражает приращение энергии Гиббса череч алгебраическую сумму приращений других видов энергии. Пре-вращенпе поверхноспюй энергии в один из представленных видов энергии отвечает определенным поверхностным явлениям. Стрелки указывают на пять возможных превращений поверхностной энерн гни 1) в энергию Гиббса, 2) в теплоту, 3) в механическую энер-ГИЮ, 4) в химическую энергию и 5) в электрическую энергию. Эти превращения сопровождают такие явления, как изменение реакционной способности с изменением дисперсности, адгезия и смачивание, капиллярность, адсорбция, электрические явления. [c.13]

    Наибольшее ускорение получают частицы с минимальной массой покоя — электроны. Сталкиваясь с частицами, обладающими меньптми скоростями, электроны в первую очередь определяют превращение электрической энергии в тепло, [c.201]

    В отличие от твердых и жидких материалов газы и пары могут находиться в столь разреженном состоянии, что движение заряженных частиц под действием наложенной разности потенциалов происходит практически без столкновений с другими частицами. В этих условиях подводимая электрическая энергия увеличивает кинетическую энергию заряженных частиц, которая может быть в дальнейшем превращена в тепло при соударении с материалами, подвергающимися технологической обработке. Этот способ превращения электрической энергии в тепло с промежуточным получением весьма высокой кинетической энергии заряженных частиц особенно выгоден при использовании электронов — частиц с минимальной массой, разгоняемых в вакууме до скоростей порядка десятых долей скорости света. Соответствующее устройство, схематически показанное на рис. 62, получило название электронной пушки, фо единст- [c.203]

    Активными называются вещества, в результате превращения которых в процессе реакции получается электрическая энергия. Обычно активным веществом гальванического элемента является отрицательно заряженный электрод — анод, па котором идет реакция окисления. На положительно заряженном электроде — катоде — идет реакция восстановления. При работе химического источника тока отрицательно заряженные частицы (анионы) переме1даются к аноду, а положительно заряженные ионы (катионы) движутся к катоду (рис. 5). [c.35]


Смотреть страницы где упоминается термин Электрическая энергия, превращение: [c.15]    [c.82]    [c.4]    [c.10]    [c.14]    [c.22]    [c.24]    [c.75]    [c.62]    [c.8]    [c.255]    [c.46]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электрическая энергия



© 2025 chem21.info Реклама на сайте