Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро ниобием и таллием

    Фотонейтронный анализ. Основу этого анализа составляет ядерная реакция (у, п), в результате которой образуются нейтроны, плотность потока которых пропорциональна содержанию ядер, принимающих участие в реакции. Для регистрации плотности потока нейтронов используют газонаполненные, сцинтилляционные счетчики или активационные детекторы на основе индия, диспрозия, серебра [302]. Наибольщее применение фотонейтронный метод получил для определения легких элементов ( Ве, Н, О), особенно бериллия. Возможности метода, по-видимому, могут быть расширены за счет определения содержания тяжелых элементов с малой пороговой энергией, например ниобия, таллия, свинца. [c.84]


    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    В среде ацетатного буферного раствора (pH 5,2) шестивалентный молибден образует соединение буровато-фиолетового цвета, извлекаемое изобутиловым спиртом [121]. Другие элементы дают следующие окрашивания шестивалентный вольфрам — оранжево-желтое, серебро — желто-оранжевое, четырехвалентный титан — буро-красное, четырехвалентный ванадий — сине-зеленое, ниобий — зеленовато-желтое, висмут — желто-оранжевое соединение (извлекается изобутиловым спиртом), четырехвалентный селен—желтое, двухвалентное железо — темно-зеленое, трехвалентное железо — розовое. Осадки образуют двухвалентная медь (сине-черный), кадмий (белый), двухвалентная ртуть (желто-бурый, переходящий в белый от избытка реактива), таллий (буро-коричневый), свинец (ярко-желтый). [c.87]


    Селен, сурьма, ниобий, тантал, платина, серебро, висмут, индий, таллий [c.321]

    Неон Никель Ниобий Олово. Осмий. Палладий Платина Полоний Радий. Радон. Рений. Родий. Ртуть. Рубидий Рутений Свинец. Селен. Сера. . Серебро Скандий Стронций Сурьма. Таллий. Тантал. Теллур. Титан. Торий. Уран. . Углерод Фосфор Фтор. Хлор. Хром. Цезий Церий Цинк, Цирконий [c.324]

    Неодим. Неон. . Никель. Ниобий. Олово. Осмий. Палладий Платина Полоний Празеодим Протактиний Радий Радон Рений Родий Ртуть Рубидий Рутений Самарий Свинец. Селен. Сера. . Серебро Скандий Стронций Сурьма Таллий. Тантал. Теллур. Тербий. Титан. Торий. Тулий. Углерод Уран.. Фосфор Фтор. . Хлор. . Хром. . Цезий. Церий. Цинк. . Цирконий Эрбий.  [c.613]

    Исследованы реакции с медью, серебром, бериллием, магнием, кальцием, цинком, стронцием, кадмием, барием, ртутью (И), бором, алюминием, галлием, индием, таллием, германием, цирконием, гафнием, свинцом, ниобием (V), ураном (VI), кобальтом, никелем. [c.55]

    Определению фосфора не мешают 1000-кратное по отношению к фосфору количество кремния, а также титан, тантал, ниобий, мышьяк, сурьма, олово, свинец, бор, индий, таллий, галлий, алюминий, кальций, магний, никель, марганец, медь, железо, ртуть и серебро, если их количества не превышают 250-кратного по [c.101]

    Неодим Никель Ниобий Олово Осмий Палладий Платина Празеодим Рений Родий Ртуть Рубидий Рутений Самарин Свинец Селен Серебро Скандий Стронций Сурьма Тантал Таллий Теллур Тербий Титан Туллий Уран Фосфор Хром Цезий Цинк [c.161]

    Алюминий (79). Барий (79). Бериллий (79). Бор (80). Бром (80). Ванадий (80). Висмут (80). Водород (81). Вольфрам (81). Галлий (81). Гафний (81). Гелий (81). Германий (81). Гольмий (82). Диспрозий (82). Европий (82). Железо (82). Золото (83), Индий (83). Иридий (84). Иод (84). Иттербий (84). Кадмий (84). Калий (85). Кальций (85). Кобальт (85). Кремний (86). Лантан (86). Литий (86). Лютеций (86). Магний (86). Марганец (87). Медь (87). Молибден (88). Мышьяк (88). Натрий (89). Неодим (89). Никель (89). Ниобий (90). Олово (90). Осмий (90). Палладий (90). Платина (90). Плутоний (92). Полоний (92). Празеодим (92). Радий (92). Рений (92). Родий (92). Ртуть (92). Рубидий (93). Рутений (93) Самарий (93). Свинец (93). Селен (93). Сера (94). Серебро (94) Скандий (94). Стронций (94). Сурьма (94). Таллий (95). Тан тал (95). Теллур (95). Тербий (95). Титан (95). Торий (96) Туллий (97). Углерод (97). Уран (97). Фосфор (97). Хром (97) [c.126]

    Подбором концентрации хлорид-иона в системе удается экстрагировать железо из основы, образующей экстрагируемые хлоридные комплексы, например из солей кобальта, кадмия, титана, ниобия и др. Осложнения вызывают только основы, образующие плохо растворимые хлориды — свинец, серебро, таллий и некоторые другие элементы, например золото. [c.100]

    Из многочисленных областей применения дитизонового метода можно указать работы по определению свинца в пищевых продуктах [33, 39—41], органических веществах [2, 30, 31], биологическом материале [5, 6, 29, 42[, растительных веществах [43], нефтепродуктах [44], в воде и сточных водах [45—47], воздухе [48—50], щелочах [51], минералах [3, 10, 52], монаците [53], теллуровой кислоте [54], боре ]35], индии ]12, 14], таллии [12], ванадии [55], ниобии и его сплавах ]55, 56], олове [13], серебре [11], кадмии [57], хроме и его сплавах ]58], молибдене и вольфраме [59], чугуне и стали ]4, [c.342]

    Следует упомянуть интересные работы Баяр с соавт. [28—30], разработавшими быстрые газотермографнческие методы выделения изотопов некоторых тяжелых и платиновых элементов. Правда, к хроматографически.м их можно отнести лишь условно, так как разделение происходит в пустой трубке, на которую накладывается отрицательный температурный градиент. В эту хроматографическую колонку потоком газа-носителя (который может быть одновременно и реагирующим газом) вводят пары соединений, образую-шиесл при проп скании газа Через облученное золото (в расплаве при )60°С). Выделяющиеся при этом различные соединения (ртуть в виде металла, рений, осмий и иридий — в виде окислов), проходя вдоль трубки, конденсируются в ней в различных температурных зонах. Вольфрам выделяют (газ-носитель—влажный Ог) в форме гидроокиси Ш02(011)2, цирконий и ниобий — в форме пентахлоридов из расплавленного хлорида серебра, а таллий выходит, по-видимому, в форме окисла ТЬО. Рений тоже в виде окисла образуется при разложении перрената аммония. [c.129]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]


    Осаждение щавелевой кислотой. Щавелевая кислота образует малорасгворнмые оксалаты с катионами многих металлов. Оксалат аммония при pH —8 полностью осаждает ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, железа, золота, висмута, индия, олова, ниобия, тантала частично осаждает ионы лития, бериллия, магния, бария, радия, титана, циркония, гафния, тория, марганца, кобальта, никеля, ртути, таллия и свинца. При некоторых условиях осаждаются также ванадий и вольфрам. При pH 3—4 полностью осаждаются ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, тория и золота неполностью осаждаются ионы бария, тантала, марганца, кобальта, никеля, меди, серебра, цинка, кадмия, олова, свинца и висмута. [c.98]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Цветные металлы делятся на 4 группы 1) тяжелые медь, свинец, олово, цинк и никель 2) легкие алюминий, магний, кальций, калий и натрий часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы 3) драгоценные, или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро 4) редкие а) тугоплавкие вольфрам, молибден, ванадий, тантал, титан, цирконий и ниобий, к ним же иногда относят кобальт б) легкие бериллий, литий, рубидий и др. в) рассеянные германий, галлий, таллий, индий и рений, к ним причисляют также селен и теллур, которые являются скорее металлоидами, чем металлами г) редкоземельные лантан, иттрий, гафний, церий, скандий и др. д) радиоактивные торий, радий, актиний, протактиний, полоний, уран и заурановые элементы. Из группы редких металлов часто выделяют в качестве отдельной группы так называемые малые мегаллы сурьму, ртуть, висмут. [c.431]

    Описано получение алюмогидридов галлия [106], индия 107], олова (IV) [108], меди(1) [109], серебра (из перхлората) [110], золота (III) [111], церия [109, 112, 113], титана (IV) [108, 114], циркония (IV) [97], ниобия [115, 116], марганца(II) [109] и железа(II) [111, 117]. С таллием получается только Т1С1(А1Н4)2 [107], а с ниобием идет частичное восстановление с образованием в зависимости [c.525]

    Алюминий Барий. Бериллий Ванадий Г адолиний Галлил. Европий Железо Золото. Индий. Иттербий Иттрий. Кадмий Калий. Кальцин Кобальт Лантан. Литий. Магний. Марганец Медь. . Молибден Мышьм Натрий. Никель. Ниобий. Олово. Палладий Платина Рений. Родий. Ртуть. Рубидий Рутений Свинец. Селен. Серебро Скандий Стронций Сурьма. Таллий. Теллур.  [c.209]

    Неон. . . Нептуний Никель. . Ниобий. . Олово. . . Осмий. . . Палладий. Платина Плутоний. Полоний Празеодим. Прометий. Протактиний Радий. . . Радон. . , Рений. . . Родий. . . Ртуть. . . Рубидий. . Рутений. . Самарий Свинец. . Селен. . . Сера. . . Серебро. . Скандий. . Стронций Сурьма. . Таллий. . Тантал. . Теллур. . Тербий. . Технеций Титан. . . Торий. . . Тулий. . Углерод. . Уран. . . Фермий. . Фосфор. . франций Фтор. . . Хлор. . . Хром. . . Цезий. . . Цсфий. . . Цинк. . . Цирконий. Эйнштейний Эрбий. . . .  [c.361]

    Литий Лютеций Ьи Магний Ма Марганец Мп Медь Си Менделевий М(] Молибден Мо Мышьяк Аз Натрий N8 Неодим Л с1 Неон N0 Нептуний Л"р Никель N1 Ниобий Олово 8п Осмпй Оз Палладий Р(1 Платина Плутоний Ри Полоний Ро Празеодим Рг Прометий Рш Протактиний Ра Радий На Радон Нп Рений Ве Родий НЬ Ртуть Нд Рубидий ВЬ Рутений Ки Самарий 8ш Свинец РЬ Селен 8е Сера 8 Серебро А Скандий 8с Стронций 8г Сурьма 8Ь Таллий Т1 Тантал Та [c.393]

    Фотометрическое определение мыигьяка в виде лшшьяковомолибденовой сини находит широкое применение. Метод используется для определения мышьяка в чугуне и стали [13, 34, 40, 43], меди и ее сплавах [17, 23, 44], сплавах серебра [45 , в олове [16], сурьме [2, 14, 17, 47], висмуте [5], свинце ]8, 22, 23], цинке [23, 33], ниобии, ванадии, галлии, индии и таллии [2], кремнии [2, 25], германии [25], селене [29, 48], теллуре [28], боре [19], в силикатных минералах [1, 30], нефтепродуктах [10[, угле [9], азотной кислоте [49[, морской воде [391, органических веществах [15, 24, 27, 50] VI биологических материалах [3, 4, 32, 51, 52]. [c.263]

    Кислород. 4 — Азот, 5 — Фтор, 6 — Хлор, 7 — Бром. 8 — Иод, 9 — Сера, 10 — Селен, И — Теллур. 12 — Полоний, 13 — Бор, 14 — Углерод, 15 — Кремний, 16 — Фосфор. 17 — Мышьяк, 18 — Сурьма, 19 — Висмут, 20 — Литий, 21 — Натрий. 22 —Калий, 23 — Аммоний, J4 — Рубидий, 25 — Це у1й, 26 — Бериллий, 27 — Магний, 28 — Кальций. 29 — Стронций, 30 — Барий. 31 — Радий, 32 — Цинк, 33 — Кадмий, 34 — Ртуть, 35 — Алюминий. 36 — Г аллий, 37 — Индий, 38 Таллий, 39 — Редкие земли, 40 — Актиний, 41 — Титан. 42 — Цирконий, 43 — Гафний, 44 — Торий, 45 — Германий, 46 — Олово,47 — Свинец, 48 — Ванадий, 49 — Ниобий, 50 — Тантал, 51 — Протактиний, 52 — Хром, 53 — Молибден, 54 — Вольфрам, 55 — Уран, 56 — Марганец, 57 — Никель, 58 — Кобальт, 59 — Железо, 60 — Медь. 61 — Серебро, 62 — Золото, 63 — Рутений, 64 — Родий, 65 — Палладий, 66 — Осмий. 67 — Иридий, 68 — Платина, 69 — Технеций (Мазурий), 70 — Рений, 71 — Трансурановые элементы. [c.125]


Смотреть страницы где упоминается термин Серебро ниобием и таллием: [c.125]    [c.669]    [c.6]    [c.509]    [c.71]   
Успехи химии фтора (1964) -- [ c.101 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Таллий



© 2025 chem21.info Реклама на сайте