Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий молибденом и хромом

    Металлы, содержащиеся на поверхности катализатора, практически не влияют на скорость выжига коксовых отложений в диффузионной области и существенно ускоряют регенерацию катализатора в кинетической области. Исследованные нами металлы по степени убывания их воздействия на скорость окисления кокса в кинетической области располагаются в следующий ряд хром> >ванадий>литий>молибден, медь, натрий>железо>кобальт, никель>бериллий, магний, кальций, стронций>калий>цезий> >свинец. [c.180]


    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Дикетоны, содержащие. алюминий, барий, бериллий, бор, цезий, хром, кобальт, никель, железо, медь, лантан, молибден, палладий, платину, торий, титан, вольфрам, уран, ванадий, [c.322]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Тяжелые металлы, являющиеся сильными ядами катализатора- крекинга (например, никель), и щелочноземельные металлы весьма умеренно ускоряют регенерацию катализатора. В присутствии щелочных металлов скорость горения кокса значительно возрастает (причем обратно пропорционально их молекулярному весу). Так, при содержании в катализаторе 1,0—1,5 вес. % лития или натрия продолжительность регенерации сокращается в 2,0—2,5 раза. Наибольшее ускорение регенерации достигается при внесении металлов, активирующих в небольших концентрациях катализатор крекинга (хром, ванадий, молибден и др.). По степени убывания воздействия на скорость окисления кокса в кинетической области испытанные нами металлы можно расположить в следующий ряд хром > ванадий > литий > молибден, медь > натрий > железо, кобальт > никель, бериллий, магний, кальций, стронций > калий > цезий > свинец. [c.43]


    Проследим за изменением коксообразующей и регенерационной активности металлов в зависимости от их положения в периодической системе элементов Д. И. Менделеева. Если рассмотреть элементы IV периода, то металлы, расположенные в начале периода (калий и кальций), способствуют уменьшению коксообразования при незначительном их влиянии на регенерацию катализатора. Металлы же, расположенные в средней части периода (хром, марганец, кобальт, молибден, никель, медь), усиливают образование кокса и некоторые из них (хром, железо) весьма сильно катализируют его сгорание. Влияние элементов главной подгруппы II группы (бериллий, магний, кальций, стронций, барий) на результаты крекинга и регенерации катализатора одинаково. Элементы главной подгруппы I группы (литий, натрий, калий, рубидий, цезий) почти одинаково влияют на коксообразование, но легкие металлы (литий и натрий) резко усиливают регенерационную способность алюмосиликатного катализатора. Это позволяет предсказывать влияние металлов, нанесенных на алюмосиликатный катализатор, на результаты каталитического крекинга. Элементы главных подгрупп I и II групп вызывают уменьшение образования кокса и снижение активности катализатора вследствие нейтрализации кислотных центров. Легкие элементы [c.54]

    Водород Гелий Неон. . Аргон. Криптон Ксенон. Радон Хлор. . Молибден Вольфрам Ниобий. Тантал. Титан Железо. Никель, Марганец Хром. . Стронций Барий Литий. Натрий. Калий. Рубидий Цезий.  [c.97]

    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]

    Барий. Бор. . Ванадий Г аллий Железо Индий Кадмий Калий. Кальций Кобальт Магний Марганец Медь. Молибден Натрий Никель Рубидий Свинец Серебро Стронций Т аллий Титан. Уран. Хром. Цезий.  [c.586]

    Сравним еще раз полимеры с металлами. Какие металлы используются в технике В последнее время технический прогресс вовлек в дело многие элементы таблицы Менделеева, которые находились в резерве. И все же железо, медь, алюминий, цинк, олово, свинец, никель, хром, кобальт, титан, молибден, вольфрам, цирконий, тантал, ну еще золото, серебро, платина, рубидий, цезий. Можно учесть еще редкоземельные-и все-таки наберется не более 30-40 разных металлов. [c.26]

    Поэтому в подгруппах А периодической системы восстановительная способность элементов возрастает с увеличением атомного номера. Например, цезий более сильный восстановитель, чем калий калий — чем натрий, и т. д. (см. табл. 3, стр. 30). В подгруппах Б—переходных элементов—отношения электроотрицательностей при возрастающих атомных номерах, как правило, обратные, поэтому в обратном порядке изменяется и восстановительная способность. Например, хром—более сильный восстановитель, чем молибден марганец—более сильный восстановитель, чем рений. [c.41]

    Магний Марганец Медь. Молибден Мышьяк Натрий Никель Неон. Олово. Ртуть. Рубидий Свинец Сера Серебро Стронций Титан. Углерод Фтор Хлор Хром Цезий Цинк [c.235]

    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]


    Литий, рубидии, калий, цезий, радии, барий, стронций, кальций, натрий, лантан, магний, плутоний, тории, нептуний, бериллий, уран, гафнии, алюминий, титан, цирко НИИ, ванадий, марганец, ниобий, хром цинк, галий, железо Кадмий, индий, таллий, кобальт, никель, молибден, олово, свинец. [c.431]

    Алюминий Сурьма Лйлшьяк. Барий. . Кадмий. Цезий. . Кальций. Хром. . Кобальт. Медь. . Индий. . Железо. Свинец Литий. . Магний. Марганец Ртуть. . Молибден Никель. Калий. . Кремний. Натрий. Олово. . Титан. . Ванадий . Цинк. . Стронций [c.169]

    ЛИТИЙ 2 — натрий 3 —калий 4 — цезий 5 — бериллий 5— faгний 7 — кальций <9—стронций 5 — свинец / ванадий // — хром / — кобальт /< —железо / — молибден /5 — никель iй — медь. [c.168]

    Сильно дегидрирующие металлы (никель, медь, кобальт) даже при ничтожном их содержании в катализаторе приводят к резкому увеличению коксоотложения вследствие повышенного образования непредельных углеводородов. Слабодегидрирующие металлы (ванадий, хром, молибден, железо) при небольшом их содержании в катализаторе (до 0,01 вес. %) образуют меньше кокса, чем исходный катализатор. При большем содержании металла в катализаторе коксообразование увеличивается. При содержании тяжелых металлов в катализаторе более 0,03—0,05 вес. % характер их влияния на изменение времени, необходимого для отложения 2% кокса, одинаков. По уменьшению количества образующегося кокса исследованные металлы располагаются в следующем порядке никель, медь>кобальт> молибден, ванадий > железо, хром>сви-нец>бериллий, магний, кальций, стронций>литий>натрий>ка-лий>цезий. Тормозящее влияние щелочных металлов возрастает в соответствии с увеличением их основности [257]. [c.176]

    Добавление щелочных металлов сильнее снижает углеродообразование, чем внесение в состав катализатора щелочно-земельных металлов. Добавление тяжелых металлов (никель, медь, кобальт) приводит к резкому (в 3-4 раза) увеличению образования углеродных отложений. Внесение в состав катализатора ванадия, молибдена, хрома, свинца по-разному изменяет углеродообразование. При их содержании в катализаторе в количестве 0,5-0,7% выход углеродного вешества в 1,3-1,5 раза больше по сравнению с исходным катализатором. При меньшем содержании имеет место снижение выхода углеродного вещества по сравнению с исходным катализатором. Так, при концентрации ванадия 0,02-0,03% выход углеродного вещества уменьщается в 1,25 раза. По данным этих работ металлы по их влиянию на образование отложений углеродного вещества располагаются в следующем нисходящем ряду (никель, медь), кобальт, (молибден, ванадий), (железо, хром), свинец, (бериллий, магний, кальций, стронций), литий, натрий, калий, цезий. [c.69]

    Алюминий Барий. Бериллий Висмут. Вольфрам Железо Золото. Кадмий. Кальций Калий. Кобальт Литий. Магний Марганец Медь. . Молибден Натрий. Никель. Олово. Палладий Платина Рубидий Свинец. Серебро Стронций Сурьма Тантал. Торий. Углерод Уран. . Хром. . Цезий. Цчнк. . Цирконий [c.355]

    Добавление тяжелых металлов (никель, медь, кобальт) приводит к резкому увеличению образования кокса. Так, при введении 0,5—0,7% этих металлов выход кокса возрастает в 3,2—3,5 раза. При значительном содержании в катализаторе ванадия, молибдена, хрома и свинца, достигающем 0,5—0,7%, коксосодержание также увеличивается (в 1,3—1,5 раза), а при наличии 0,02—0,003% ванадия выход кокса в 1,25 раза меньше, чем в присутствии исходного катализатора. По уменьшению влияния на образование кокса металлы располагаются в следующем порядке никель, медь > кобальт > молибден, ванадий > железо, хром > свинец > бериллий > магний > кальций > стронций > >литий > натрий > калий > цезий. [c.53]

    К структурному типу вольфрама (тип ОЦК-металлов) относятся тугоплавкие металлы хром, ванадий, молибден, ниобий, тантал, р-кобальт а-железо (ниже 900° и выше 1400°С, а в области 910°—1400° С железо имеет ГЦК-струк-туру), титан, цирконий, гафнпй, щелочные элементы — литий, натрий, калий, рубидий, цезий, щелочноземельные — кальций, стронций, барий, актиниды — уран, нептуний, плутоний. Из интерметаллических соединений в [c.160]

    Из всех известных в настоящее время металлов больще половины можно О саждать на другие металлы электролитическим способом. Практически осуществляют гальваиичеекие покрытия не менее чем 10— 15 металлами, в том числе больше всего цинком, никелем, медью, хромом, оловом, кадмием, свинцом, серебром и железом. Менее распространены покрытия платиной, родием, палладием, кобальтом, марганцем , мышьяком, индием, ртутью. Покрытия такими металлами, как галлий, нио бий, вольфрам, молибден и рений, в гальванической практике широкого применения не имеют. За последнее время были о саждены электролитически такие виды металлов, как уран, плутоний, актиний, полоний, цезий, торий, а также германий. Получили значительное практическое применение различные тюирытия сплавами, в том числе сплавами олово-цинк, олово-никель, олово-свинец, никель-кобальт, золото-медь и другими. Почти все применяемые виды покрытий можно разбить по их назначению на следующие группы защитные, защитно-декоративные к специальные покрытия. [c.11]

    Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал- [c.37]

    Алюминий (А1) Барий (Ва). . Берилий (Ве) Ванадий (V). Висмут (В1). Вольфрам ( ) Железо (Ре). Золото (Аи). Иридий (Лг). Кадмий (Сс1). Калий (К). . Кальций (Са) Кобальт (Со) Кремний (81). Литий (Ь1). . Магний (Mg) Марганец (Мп) Медь (Си). . Натрий (Ыа). Никель (N1). Молибден (Мо) Ниобий (Nb). Олово (Зп). Осмий (Оз). Палладий (Р(1) Платина (Р1) Ртуть (Hg). Рубидий (НЬ) Свинец (РЬ). Серебро (Ag) Стронций (8г) Сурьма (5Ь). Тантал (Та). Титан (Т1). . Торий (ТЬ). Хром (Сг). . Цезий (Сз). Цинк (2п). . Цирконий (Zr) Теллур (Те).  [c.186]

    Во всех трех больших периодах при переходе от металла I группы (калия, рубидия и цезия) к металлам VI группы (хрому, молибдену и вольфраму) наблюдается сильное уменьшение межатомных расстояний и диаметров атомов, соответствующее предлагаемой гипотезе о полном отделении всех валентных электронов и обнажении р -оболочек ионов. Чем больше избыточный заряд таких ионов с одинаковыми электронными конфигурациями, тем, естественно, сильнее притяжение р-электронов к ядру и тем меньше диаметр этих ионов и короче расстояния между ними. Этому сокращению расстояний способствует и повышение электронной концентрации. Атомные диаметрых-мар-ганца (плотная кубическая модификация) и б-марганца (объемноцентрированная кубическая модификация) резко увеличены по сравнению с соответствующим диаметром атомов хрома и железа, что вновь указывает на пониженную степень ионизации атомов марганца (1- -). Железо, кобальт и никель имеют меньшие атомные диаметры вследствие того, что они двухкратно ионизированы. От железа к никелю межатомные расстояния уменьшаются в связи с сокращением размеров внешней электронной оболочки. Уменьшение межатомного расстояния продолжается в VII и VIII группах в связи с переходом от объемноцентрированной к плотнейшим упаковкам и достигает минимума у рутения и осмия. Межатомные расстояния от рутения к палладию и от осмия к платине слегка увеличиваются вследствие уменьшения электронной концентрации от 4 до 2 элЫтом и соответствующего понижения энергии межатомной связи. Далее к побочным металлам второй группы (цинку, кадмию и ртути) межатомные расстояния и атомные диаметры продолжают возрастать в связи с уменьшением концентрации свободных электронов. Атомные радиусы [c.233]

    Изменение атомных радиусов и межатомных расстояний при 20° закономерно связано с изменением характеристик механической жесткости и прочности металлов при той же температуре. При высоких температурах вследствие разных коэффициентов расширения максимумы жаропрочности перемеш аются на хром, молибден и вольфрам, которые обладают максимальными температурами плавления. Механическая жесткость металлических решеток может быть характеризована упругими модулями. Модули нормальной упругости Е, модули сдвига 6 и объемные модули К металлов больших периодов при 25° представлены на рис. 104. С возрастанием числа валентных электронов от одного до шести, т. е. от ш елочных металлов к хрому, молибдену и вольфраму, упругие модули сильно увеличиваются, причем переход от IV к V группе приводит к сравнительно небольшому повышению модулей. В четвертом периоде они достигают максимального значения у хрома, сильно понижаются при переходе к марганцу, сохраняют почти постоянное значение у келеза, кобальта, никеля, а затем резко падают при переходе к меди и цинку. В пятом и шестом периодах упругие модули сильно возрастают от рубидия и цезия к молибдену, вольфраму и далее продолжают увеличиваться к рутению и осмию, а затем уже резко понижаются при переходе к палладию, платине и метал-.тгам I и II побочных групп. [c.234]

    И ЭТО заключение действительно подтверждается разительным образом ВО всей совокупности свойств элементов, принадлежащих к четным и нечетным строкам или рядам. Элементы четных рядов образуют наиболее энергические основания, и притом основная способность для них возрастает в данной группе по мере увеличения атомного веса. Известно, что цезий более электроположителен и образует основание более энергическое, чем рубидий и калий, как показал это Бунзен в своих исследованиях этого металла относительно бария, стронция и кальция это известно каждому по давнему знакомству с соединениями этих элементов. То же повторяется и в такой же мере при переходе в четвертой группе от иттрия к церию, цирконию и титану, как видно на таблице, а также при переходе от урана к вольфраму, молибдену и хрому. Эти металлы четных рядов характеризуются еще и тем, что для них неизвестно ни одного металлоорганического соединения, а также ни одного водородистого соединения, тогда как металлоорганические соединения известны почти для всех элементов, расположенных в нечетных рядах. Такое различие элементов четных и нечетных рядов основывается на следующем соображении элементы нечетных рядов, относительно ближайших элементов той же группы, но принадлежащих к четным рядам, оказываются более кислотными, если можно так [246] выразиться, а именно, натрий и магпий образуют основания менее энергические, чем калий и кальций серебро и кадмий дают основания еще менее энергические, чем цезий и барий. В элементах нечетных рядов основные способности различаются гораздо менее при возрастании атомного веса, чем в элементах четных рядов. Окись ртути, правда, вытесняет окись магния из растворов, окись талия, конечно, образует основание более энергичное, чем окись индия и алюминия, но все же это различие в основных свойствах не столь резко, как между барием и кальцием, цезием и калием. Это особенно справедливо для элементов последних групп из нечетных рядов. Кислоты, образованные фосфором, мышьяком и сурьмою, а также серою, селеном и теллуром, весьма сходны между собою при одинаковости состава только прочность высших степеней окисления с возрастанием атомного веса здесь, как и во всех других рядах, уменьшается, а кислотный характер изменяется весьма мало. [c.757]

    Кислород. 4 — Азот. 5 — Фтор, 6 —Хлор, 7 — Бром. 8 — Иод, 9 — Сера, 10 — Селен, 11 - Теллур. 12 — Полоний. 13 — Бор, 14 — Углерод, 15 — Кремний. 16 — Фосфор 17 — Мышьяк, 18 — Сурьма. 19 — Висмут. 20 — Литий, 21—Натрий, 22 — Калий, 23 — Аммоний, 24 — Рубидий, 25 — Цезий, 26 — Бериллий, 27 — Магний, 28 — Кальций. 29 — Строн ций. 30 — Барий. 31 — Радий, 32 — Цинк. 33 — Кадмий, 34 — Ртуть, 35 — Алюминий, 36 — Галлий, 37 — Индий, 38 — Таллий. 39 — Редкие земли, 40 — Актиний. 41 — Титан. 42 — Цирконий. 43—Гафний, 44 — Торий, 45 — Германий, 46 — Олово. 47 — Свинец, 48 -- Ва-надий, 49 — Ниобий, 50 —Тантал. 51 — Протактиний, 52 — Хром. 53 — Молибден, 54 — Вольфрам. 55 — Уран, 56 — Марганец, 57 — Никель, 58 — Кобальт. 59 — Железо. 60 — Медь. 61 — Серебро, 62 — Золото, 63 — Рутений, 64 — Родий, 65 — Палладий, 66 — Осмий. 67—Иридий, 68 — Платина, 69 — Технеций (Мазурий). 70 — Рений, 71— Трансурановые элементы. [c.125]


Смотреть страницы где упоминается термин Цезий молибденом и хромом: [c.107]    [c.162]    [c.168]    [c.170]    [c.170]    [c.125]    [c.168]    [c.20]    [c.428]    [c.666]    [c.6]    [c.178]    [c.181]   
Успехи химии фтора (1964) -- [ c.103 , c.105 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.103 , c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2024 chem21.info Реклама на сайте