Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы хроматографического разделения на катионитах

    Ионообменная хроматография используется как вспомогательный метод, предшествующий количественному определению веществ. При помощи хроматографического метода разделяют компоненты анализируемого раствора катионы от анионов, катионы от катионов, анионы от анионов. Ионообменная хроматография основана на обратимом стехио-метрическом обмене ионов, содержащихся в растворе, на подвижные ионы ионообменника. Одновременно с разделением элементов осуществляется их концентрирование, что имеет большое значение для повышения точности результатов анализа при определении примесей. Количественное определение веществ после их хроматографического разделения проводят химическими, физико-химическими или физическими методами. Различают три вида ионообменной хроматографии фронтальный анализ, вытеснительная хроматография и элюентная хроматография. Из них в количественном анализе применяют только вытеснительную и элюентную хроматографию. По этим методам разделяемую смесь вначале адсорбируют в верхней части колонки, а затем элюируют соответствующим растворителем (элюентная хроматография) или раствором (вытеснительная хроматография). [c.19]


    Хроматографическое разделение ионов натрия и калия методом вытеснения проводят в колонках, в которые помещают катионит КУ-2 в Н-форме (с содержанием дивинилбензола от 2 до 16%). В качестве вытесняющего раствора применяют 0,1 н. раствор соляной кислоты. Взвещивают 10 г смолы КУ-2 (в пересчете на сухое вещество) в Н-форме, заливают в стакане водой и переносят в калиброванную хроматографическую колонку. Спускают воду до верхнего уровня смолы. В верхнюю часть осторожно вносят 3 мл раствора, содержащего 100 мг смеси хлоридов калия и натрия (в расчете на К" "- и Ма -ионы в эквимолекулярных отношениях). Этот раствор пропускают через сорбент со скоростью [c.93]

    Кроме хроматографического разделения ионов одного и того же знака заряда методом ионного обмена в динамических условиях можно отделять ионы одного знака от ионов другого знака. Примером такого разделения является отделение на катионите катионов железа(1И), алюминия(П1), кальция (И) и магния (И), мешающих определению фосфат-ионов при анализе природных фосфатов. [c.322]

    В соответствии с терминологией, принято в этой книге, ионообменная хроматография включает в себя процессы разделения способных к обмену ионов. Разделение катионов основано на их различной способности поглощаться катионитами при подходящих условиях эти различия можно использовать для количественного отделения катионов друг от друга. Точно так же аниониты могут быть использованы д.чя разделения различных анионов. В гл. 5. 6 отмечалось, что наиболее важным, с аналитической точки зрения, методом хроматографического разделения является элюентная хроматография именно этот метод преимущественно рассматривается в настоящей главе. Если ионы значительно различаются по способности к обмену, то операция их разделения может быть упрощена. Такие упрощенные методы, как селективное элюирование и селективное поглощение, рассматриваются в последних разделах этой главы. [c.179]

    В последние годы широкое распространение получил метод хроматографического разделения веществ в тонком слое (0,1—0,5 мм) носителя, нанесенного на стеклянную пластинку. По способу проведения этот метод сходен с хроматографией на бумаге, однако вместо волокон целлюлозы в качестве носителя могут использоватьсй разнообразные сорбенты окись алюминия, активированный уголь, силикагель, ионообменные смолы, неорганические ионообменники и т. п. При разделении веществ в тонком слое в зависимости от поставленной задачи могут быть использованы принципы либо адсорбционной, либо распределительной, либо ионообменной хроматографии. По сравнению с бумажной хроматографией разделение в тонком слое в большинстве случаев проводится значительно быстрее. Например, методом тонкослойной хроматографии на смеси гипса и силикагеля отделение ионов 1102 + от смеси катионов Ре, ТЬ, АГ, Си и других было осуществлено за 10—1Б мин. [c.195]


    Рассмотрены основные этапы развития исследований по применению хроматографии в анализе неорганических веществ. Показано, что в результате общирных работ по синтезу сорбентов, носителей, комплексообразующих реагентов и по теории сорбции были успешно разработаны для аналитических целей многочисленные методики разделения смесей катионов и анионов методами ионообменной и распределительной хроматографии. В дальнейшем вследствие интенсивной разработки прямых, как правило, инструментальных методов определения хроматография в анализе неорганических веществ (в отличие от хроматографии органических соединений) не получила широкого распространения и в настоящее время применяется преимущественно для разделения смесей редкоземельных элементов и платиновых металлов. Однако разработанные методы хроматографического разделения смесей близких по свойствам элементов вое более широко применяются в химической технологии и гидрометаллургии. [c.366]

    Применение радиоактивных индикаторов привело к быстрым и очень значительным успехам в изучении теории и разработке практических методов хроматографического разделения таких трудных систем, как смеси редкоземельных элементов, продукты деления урана и др. в количествах от микрограммов до килограммов разделяемых веществ. Хроматография была открыта и впервые применена М. С. Цветом [1110] еще в 1903 г., но лишь недавно получила широкое и разнообразное применение как в лабораторной практике, так и в промышленности. Особенно много внимания в последнее время было уделено распределительной хроматографии в колонках, заполненных синтетическими ионообменными смолами. Основы этого способа разделения, в общих чертах, заключаются в следующем. Катионообменные смолы содержат кислоты, водород которых способен обмениваться на катион из раствора. В рассматриваемых ниже работах большей частью применялись кислотные фенолформальдегидные полимеры (КН), содержащие сульфоновые, карбоксильные и фенольные группы, предварительно обработанные солями аммония, что ведет к образованию соединений типа КЙН . Если раствор металлического иона (который мы для простоты предположим одновалентным) пропускать через слой такой смолы, то происходит обменная реакция  [c.431]

    Вопросу анализа аминокислот методом хроматографии на бумаге посвящено большое число работ советских и иностранных авторов. Однако почти все они связаны с разделением аминокислот белков и других биологических препаратов [61. Наша попытка применить их для анализа мелассы не дала положительных результатов, что можно объяснить мешающим действием остальных компонентов мелассы, ио отношению к которым содержание отдельных аминокислот составляет лишь 0,1—3 вес. %. Описанный в литературе метод 17, 81, состоящий в сорбции аминокислот на катионите с последующей их элюцией и идентификацией на бумаге неудобен, так как требует сложной специальной аппаратуры и чрезмерно длителен. Первой частью нашего исследования было хроматографическое разделение искусственной смеси из десяти аминокислот, приблизительно имитирующей аминокислотный состав мелассы [1, 81. Смесь включала лизин, аргинин, серии, глицин, аспарагиновую и глютаминовую кислоты, а-аланин, валин, метионин и лейцин. Растворы аминокислот готовили в 15%-ном этиловом спирте с концентрацией 0,5—1 у аминокислоты в 1 мкл. [c.212]

    Хроматография относится к физико-химическим методам. Хроматографические методы применяются не только для идентификации, но и для разделения элементов. Знакомство с хроматографическими методами позволит студентам освоить технику разделения и идентификации катионов, основанную на использовании адсорбентов и ионитов. [c.4]

    Наиболее обширной областью использования ионообменных процессов в аналитической химии следует, по-ви-димому, считать хроматографическое разделение смеси ионов, а также ионообменный хроматографический анализ металлов и сплавов. Ионный обмен сам по себе не позволяет открыть или определить какие-либо ионы. Эта задача решается при сочетании ионообменных процессов с каким-либо известным качественным или количественным методом определения катионов и анионов. [c.139]

    Привести примеры комплексонометрического определения а) катионов в щелочной среде при pH 10—13 б) катионов в среде аммонийного буфера при pH 9—11 в) катионов в кислой среде при pH 1—3 г) катионов в среде ацетатного буфера при pH 3,5—6,5 д) катионов по методу обратного титрования е) катионов по методу замещения ж) смеси катионов методом последовательного титрования при различных pH з) смеси катионов с использованием маскирующих агентов к) смеси катионов с использованием хроматографического разделения л) анионов по методу обратного титрования м) анионов по методу замещения н) малорастворимых соединений о) органических соединений. [c.121]


    Радиохимическое разделение Ag, Мо, As, u, Sb, Ge, Fe, r, In и Zn методами осаждения и экстракции при анализе облученных образцов железных метеоритов описано в [1051]. Метод распределительной хроматографии для анализа примесей в арсениде галлия описан в [533]. Предложены методы последовательного разделения элементов на ионитах [175, 380, 906, 1091]. В качестве примера приведена схема хроматографического разделения примесей при анализе металлического осмия [380]. Показана [652] возможность использования древесной смолы для концентрирования d(II), Zn(II), Hg(II), u(II), r(III) из проб подземных вод. Найдены условия сорбции r(VI) из вод на Амберлите IR-401 [859]. При анализе селена на содержание Со, Сг, Ga, Na применяют электрофоретический метод разделения катионов и анионов [618]. Степень разделения указанных элементов и селена > 10  [c.104]

    Ионообменная хроматография — очень распространенный метод, особенно широко применяющийся для разделения редких земель и аминокислот. Термин ионообменная хроматография показывает, что процесс состоит во взаимном разделении ионов, способных обмениваться со смолой. Отделение друг от друга различных катионов основано на различии в константах обмена если подобрать соответствующие условия, эти различия можно использовать для количественного разделения. Аналогичным образом можно использовать для взаимного разделения различных анионов и анионообменные смолы. При хроматографических разделениях желательно пользоваться растворителем, в котором проявляется только один какой-нибудь механизм сорбции как правило, ионообменные смолы хорошо приспособлены к этому требованию. [c.77]

    Простейшим случаем хроматографического разделения является отделение катиона от аниона. Если целью отделения служит очистка одних ионов от других, то раствор ионов пропускают через ионно-обменную смолу, адсорбирующую ионны, подлежащие удалению из раствора. Примером такого использования хроматографического метода отделения может служить очистка многовалентных катионов, например, трехвалентного железа от фосфат-иона. [c.317]

    В данной главе на ряде конкретных примеров рассмотрено разделение катионов и анионов. Примеры включают трудно разделяемые группы катионов, на которых особенно удобно продемонстрировать возможности хроматографических методов. В связи с этим на рис. 51.5 приведена общая схема разделения многокомпонентной смеси катионов. [c.321]

    Эрленмейер и Дан [3] предложили метод разделения катионов на хроматографических колонках из ортооксихинолина. [c.243]

    Всем этим требованиям удовлетворяет безводная окись алюминия, наиболее часто используемая в осадочной хроматографии в качестве носителя. Образование осадков на безводной окиси алюминия сопровождается, как правило, ионным обменом. По этому при разделении катионов осадочно-хроматографическим методом на безводной окиси алюминия последнюю необходимо перевести в анионную форму для уменьшения возможности ионного обмена. [c.390]

    В настоящем учебнике рассматривается другой метод, представляющий собой сочетание обычного полумикрохимического разделения катионов на аналитические группы с последующим хроматографическим открытие. отдельных ионов. [c.442]

    Цель работы. Разделение катионов II аналитической группы хроматографическим методом. [c.312]

    При выполнении процессов ионообменной хроматографии хроматографическая колонка заполняется ионитом, выполняющим роль неподвижной фазы. Ионит применяют в форме, соответствующей разделяемым компонентам, т. е. при разделении катионов используют катионит, а при разделении анионов — анионит. Проводят хроматографическое разделение на ионите теми же методами (фронтальным, вытеснительным или элюционным). [c.134]

    Ряд явлений, положенных в основу хроматографических методов, известен уже давно. Например, еще во времена Аристотеля морскую воду очищали с помощью некоторых видов почв. Также давно известно, что минеральные удобрения остаются в почве в течение длительного времени и лишь с трудом вымываются дождевой водой. Английские химики-почвенники Уэй [35] и Томпсон [30] изучали процессы удерживания в почве катионов из фильтрующихся сквозь нее растворов. В ходе исследований они открыли в 1850 г. основные законы ионного обмена, хотя и не представляли себе, насколько важны сделанные ими наблюдения. Ионный обмен на природных продуктах (главным образом, на минералах и почвах) был позднее подробно изучен, но серьезный интерес к этому процессу возник только после синтеза первого органического ионообменника (1935 г.). Адамс и Холмс [1], конденсируя фенолсульфоновые кислоты с формальдегидом, получили искусственные смолы, с участием которых в отличие от неорганических ионообменников возможен обмен в водных растворах не только катионов металлов, но и ионов водорода. После того как путем конденсации полиаминов с формальдегидом были получены анионообменники, определены условия, позволяющие удалять электролиты из водных растворов новым методом — деионизацией, а не перегонкой. По мере того как налаживалось получение анионо- и катионообмен-ников, их все шире стали применять не только для ионного обмена, но и для хроматографического разделения, т. е. возникла ионообменная хроматография. Во время второй мировой войны и после нее ионообменники постоянно применялись в ядерных исследованиях, поскольку, как выяснилось, они позволяют добиться высокоэффективного разделения радиоактивных изотопов. Ионообменная хроматография входит также в число методов, обеспечивавших в последние два десятилетия столь быстрое развитие биохимии. [c.13]

    Метод хроматографического разделения может быть использован для отделения иХх от материнского элемента—В качестве адсорбента целесообразно нспользовагь катионит, а десорбцию производить кислотой. [c.322]

    Хроматографическое разделение катионов может производиться на катионитах или анионитах. При разделении на катионитах сначала адсорбируют все катионы на соответствующем адсорбенте, из которого потом фракционированно их выделяют при помощи этилендиаминтетрауксусной кислоты. В некоторых анализах можно применить прием, при котором выбором подходящих условий (особенно изменяя величину pH) достигают элюирования только одного катиона, образующего наиболее прочный комплекс с комплексоном III в других методах анализа получают в элюате последовательно два или более катионов. При применении второго способа необходимо собирать фракции отдельно по мере их вытекания, для чего целесообразно применить автоматический коллектор фракций каждая полученная фракция отделяется количественно. Этот способ определения наиболее удобен при анализе радиоактивных изотопов с применением счетчика Гейгера-Мюллера. Результаты всегда обрабатывают графически по зависимости найденного количества от последовательности фракции. Положение максимумов в определенных, точно установленных условиях характеризует разделяемые катионы, высота. максимумов дает количественный состав. [c.250]

    В последние годы большое распространение при определении бора получили методы хроматографического разделения металлов [41, 101 —119]. Исследование адсорбируемости борной кислоты на катионо- и анионообменных смолах [41, 108, 115, 116] показало, что по эфектив-ности поглощения бора отечественные аниониты типа АН и АВ располагаются в ряд АВ-16 > АН-9 > > АН2ФГ > АН-1 [115]. Амберлит IRA-400 в ОН--форме адсорбирует бор при pH > 2 [108], в С1--форме — при pH > 5. Слабоосновной диаион А в ОН -форме адсорбирует бор в кислой области с максимумом при pH 3—4, в С1 -форме — при pH > 6. Количественная адсорбция борной кислоты затруднена и не нашла распространения. [c.27]

    В литературе описаны методы хроматографического разделения циркония и гафния [1—3]. Наиболее удовлетворительные результаты по хроматографическому разделению циркония и гафния были получены Листером [4] с использованием катионитовых смол. Автором было изучено хроматографическое разделение с использованием соляной, азотной, серной, хлорной и щавелевой кислот. Поглощение циркония происходит на катионите дауэкс-50 и цеок арб-226 из 2 н. раствора хлорной кислоты. Позже было показано, что поглощение происходит более полно из 2 н. раствора азотной кислоты. В опытах с применением соляной кислоты первые фракции обогащались гафнием. Однако в опытах с использованием азотной и хлорной кислот разделения циркония и гафния не было достигнуто. В опытах с 0,01%-ным раствором щавелевой кислоты было показано, что цирконий десорбируется раньше гафния. Лучшие результаты достигнуты с использованием 1 н. раствора серной кислоты. В ряде опытов наблюдался проскок гафния в циркониевую фракцию, обусловленный наличием полимерных ионов. В развитие работ Листера и Макдональда опыты в укрупненных масштабах описываются в докладе Хадсуэла и Хатчена[5]. Авторы оценивают производительность ионообменного метода 0,5 кгЫас на сечения колонки. Такая низкая производительность затрудняет промышленное использование хроматографического метода по сравненик> с более производительным экстракционным. Авторы показали, что производительность хроматографического метода, впервые разработанного Листером, настолько мала, по сравнению с производительностью, достигаемой в процессе экстракции, что использование ионообменного метода для промышленных целей нецелесообразно. [c.118]

    Для разделения изотопов были также применены методы, основанные на избирательной обменной адсорбции ионов. Для этой цели подходящим адсорбентом оказался цеолит, легко обменивающий свои ионы натрия с катионами растворенных электролитов. Если эти катионы представляют собой смесь изотопов, то в равновесии их изотопный состав в цеолите и в растворе неодинаков. Например, для цеолита и раствора хлористого лития отношение Li /Li в первом в 1,022 раза больше, чем во втором. Однократное разделение можно умножить, применяя тот же принцип фракционной колонки. Однако он должен быть видоизменен, учитывая затруднительность пропускания твердой насадки цеолита вдоль колонки навстречу раствору. Вместо этого был использован известный метод хроматографического разделения, открытый М. С. Цветом и получивший в последние годы широкое распространение и очень разнообразные применения. В одной из работ [60] через колонку высотой Ими диаметром 1,8 см, наполненную цеолитом, пропускали поочередно раствор Li l и раствор Na I, вымывавший ионы лития из цеолита. В крайних фракциях отношение Li Li было 12—14 и 9, вместо 11,7 в природном литии. Этот же способ был применен для разделения изотопов калия и дал увеличение отношения кз9ук 1 от первоначального 14,1 до 14,8. Попытка разделения таким путем изотопов азота в ионе аммония не увенчалась успехом. [c.83]

    Для хроматографического разделения катионов разработан метод, аналогичный методу одноколоночного разделения анионов, описанному в гл. 5. Разделяющая колонка содержит катионообменную смолу малой емкости, приготовленную путем ограниченного сульфирования частиц полимерной смолы. Элюент представляет собой разбавленный раствор минеральной кислоты (например, азотной) или этилендиаммониевой соли. Фоновая проводимость такого элюента довольно низка, и поэтому детектор электропроводности можно устанавливать непосредственно после разделяющей колонки, т. е. вторая (компенсационная) колонка не нужна. [c.164]

    Анионам посвящено зпачительно меньшее число работ, чем катионам. Хроматографию на бумаге использовали в неорганическом анализе более целенаправленно и более широко для катионов, анализом же анионов занимались мало. Только для анализа фосфатов хроматография на бумаге оказалась незаменимым методом, а именно в случае разделепия конденсированных фосфатов, а также при анализе малых количеств фосфатов в материалах растительного и животного происхождения. Принцип хроматографического разделения аниоиов тот же, что и для катионов. Однако если нри хроматографическом разделении катионов в большинстве случаев ирименяют кислые подвижные фазы, то при хроматографическом разделенни анионов чаще используют щелочные системы растворителей. [c.706]

    Установление сорбционных рядов неорганических ионов на оксиде алюминия дало возможность К. М. Оль-шановой разработать ионообменно-хроматографический метод качественного анализа катионов, основанный на разделении целого ряда веществ при помощи этого сорбента [71, 83—85]. [c.142]

    Скогсайд [115] описал полистирольное производное, обладающее повышенным сродством к ионам калия. Многие исследователи пытались синтезировать иониты с хелатными свойствами. Среди ионитов этого типа, исследованных Грегором с сотрудниками [48], наиболее перспективным является ионит на основе ж-фениленди-глицина, формальдегида и вещества, образующего поперечные связи. Этот ионит обладает повышенной селективностью по отношению к ионам некоторых переходных элементов. Аналогичные иониты были получены Пеппером с сотрудниками [90] из хлорметилирован-ного сополимера стирола и дивинилбензола. Блазиус и Олбрих [6] получили смолу с хелатными свойствами поликонденсацией л-фени-лендиаминтетрауксусной кислоты с резорцином и формальдегидом. Емкость этого ионита около 0,5 мг-экв/г. Такие иониты использовались для аналитического отделения переходных металлов от щелочноземельных металлов. Сообщалось также об успешном разделении кобальта и никеля методом хроматографического элюирования. С помощью диаллилфосфатного комплексообразующего ионита, описанного Кеннеди с сотрудниками [66], удалось отделить бериллий от многовалентных катионов (гл. 15). [c.35]

    Предложенный А. М. Гурвичем и Т. Б. Гапон хроматографический адсорбционно-комплексообразовательный метод применяется для разделения катионов металлов, для очистки солей от микропримесей, для улавливания и концентрирования из растворов ценных отходов производства. Промышленность явилась первой сферой применения этого метода. В дальнейшем он стал использоваться и для решения задач аналитической химии. Этот хроматографический метод имеет самостоятельное значение, поскольку механизм разделения смеси растворенных компонентов обусловлен в данном случае не только адсорбцией, а является более сложным. [c.217]

    NaOH, сурьма количественно проходит в фильтрат, а таллий полностью задерживается катионитом. В щелочной среде сурьма находится в виде анионов ЗЬОз , ЗЬОг , ЗЬОз и, следовательно, не задерживается катионитом. Аналогичное явление наблюдается в присутствии разных комплексообразующих анионов (пирофосфат, цитрат, тартрат, оксалат) таллий количественно адсорбируется катионитом, сурьма переходит в фильтрат [53]. Лучще всего использовать при хроматографическом разделении сурьмы и таллия винную или лимонную кислоты. Этот метод отделения таллия от сурьмы применяется при определении таллия в пылях цинкового и свинцового производств, в цинковом электролите, металлическом кадмии, В ряде работ, посвященных хроматографии на бумаге, имеются данные и о солях таллия. В качестве растворителя наиболее часто применяются амиловый или бутиловый спирты, насыщенные 1—2Л/ раствором НС1, или смеси изопропилового или этилового спиртов с 5Л/ раствором НС1 (9 1). Для характеристики разделения катионов приводим значения Rf [620—622] (табл. 17). [c.74]

    В соответствии с минимальными размерами диаметров промежуточных каналов Баррером [2] были введены три категории молекулярных сит. Однако следует отметить, что эта классификация не точна, так как сорбционная способность некоторых сит, имеющих каналы больших размеров, но вода из которых полностью удалена, может быть сходна с сорбционной способностью цеолитов, имеющих узкие каналы. При тщательном выборе катионных форм цеолита их можно эффективно использовать для широкого ряда хроматографических разделений. Область применения данного метода может быть значительно расширена путем использования его при различных температурах, так как две молекулы, сорбирующиеся с одинаковыми скоростями при одной температуре, могут иметь совершенно разные скорости сорбции при понижении температуры сорбции. Так как сорбционная емкость цеолитов обычно намного больше для полярных молекул, чем для неполярных, то разделить эти две группы соединений очень легко. Это различие в сорбции позволяет использовать цеолиты для осушки газов. Создание в последние годы молекулярных сит типа Linde (см. стр. 75) позволило проводить такие процессы в заводских масштабах. Более того, при использовании для осушки газов молекулярные сита имеют большие преимущества по сравнению с такими реагентами, как активированная окись алюминия и силикагель, в особенности там, где требуется эффективно [c.67]

    Электрохроматографическое отделение бериллия. Зайлер, Арц и Эрленмейер [642] применили комбинированный вариант хроматографического разделения на бумаге солей щелочноземельных металлов и бериллия. Эти смеси под вергались сначала хроматографированию восходящим методом (бумага Ватман № 1) в течение 13 час., затем хроматографиро-ванию в электрическом поле при напряжении 600 в, приложенном перпендикулярно движению ионов, и снова без электрического поля в течение 2 час. Электрохроматографирование позволяет разделять катионы и анионы. [c.153]

    Предло>1л ены методы разделения катионов в тонком слое сорбента, пропитаниом осадителями, окислителями и восстановителями [38—401. электрохроматографическое разделение неорганических ионов в тоиколг слое сорбента [41], хроматографическое разделение и дробное определение некоторых редких элементов [42 . [c.130]

    Наиболее важным для качественного химического анализа является метод осадочной хроматографии смесей катионов или анионов. Этот метод разработан особенно детально К. М. Ольшановой и Н. Ф. Кулаевым. Осадочно-хроматографическое разделение ионов возможно в двух вариантах метод хроматографического систематического анализа на колонках с алюминатной окисью алюминия (К. М. Ольшанова) и метод хроматографического дробного анализаг на фильтровальной бумаге (Н. Ф. Кулаев). Кроме того, предложен метод осадочной капиллярной хроматографии в гелях и тонких стеклянных капиллярах (Ф. М. Шемякин). [c.156]

    В современном химическом анализе значительное место занимают методы, которые часто очень простым способом решают проблему разделения и определения компонентов в сложных смесях. Из этих методов наибольшее распространение имеют все виды хроматографических методов адсорбционная, распределительная, ионообменная хроматография, хроматография на бумаге и электрофорез на бумаге. Природа сил, которые действуют в отдельных хроматографических разделениях, различна, но общим для них является миграция анализируемых веществ в систему двух и более фаз. При определении некоторых веществ, близких по химическим свойствам, например ряда неорганических катионов, количественное разделение которых одной лишь хроматографической техникой часто затруднительно, выгодно объединить два хроматографических способа или использовать в хроматографии еще некоторые характерные свойства отделяемых веществ. При определении катионов, нанример, выгодно сначала получить их комплексные соединения с различными комплексообразующими реагентами, а эти комплексы потом уже можно хроматографически разделить. [c.245]

    Примером второго типа методов разделения является отделение бария от стронция по Бовы и Дюикертсу [2]. Как было сказано выше, коэффициент распределения обоих катионов в виде их комплексонатов достаточно велик, чтобы можно было его использовать для разделения этих металлов. На рис. 27 можно видеть влияние pH и скорости протекания на разделение катионов. Метод был применен для разделения радиоактивных бария и стронция после отщепления урана. Аналогично этому проводят разделение свинца и бария по Такетатсу [14] комплексонат бария при pH 4—4,5 адсорбируется, тогда как комплексонат свинца проходит через колонку в элюат. Можно полагать, что примеров применения хроматографического метода в химии радиоактивных изотопов значительно больше, но до настоящего времени они не были опубликованы. [c.251]

    Описываются наиболее применяемые в учебных лабораториях бессероводородные методы качественного анализа катионов химические (аммиачно-фосфатный, кислотно-основный, би-фталатный, сульфидно-основный и тиоацетамидный), физические и физико-химические (спектральный, люминесцентный, хроматографический, экстракционный и полярографический). Особое внимание уделено систематическому ходу анализа, разделению и обнаружению катионов и анионов, а также идентификации природных соединений, промышленных продуктов и технических материалов. [c.2]

    Полидентатные соединения типа комплексонов благодаря (Своей способности образовывать прочные водорастворимые комплексы с большинством катионов все больше применяются для решения народнохозяйственных задач [I—8]. Это вызывает необходимость дальнейшего расширения ассортимента подобных соединений, а также создания доступных методов получения уже известных, практически ценных реактивов. К числу последних относится р-оксиэтилэтилендиамин-триуксусная кислота (ОЭДТА), используемая, в частности, в качестве элюанта при хроматографическом разделении редких и редкоземельных элементов. Применение ОЭДТА до настоящего времени ограничено ее малой доступностью. [c.32]

Рис. 82. Хроматографическое разделение радиоизотопов редкоземельных элементов после отделения эрбия, облученного протонами с энергией 660 Мэе, методом распределительной хроматографии. Катионит дауэкс-50Х8 (12—15 меш) [188] Рис. 82. <a href="/info/39784">Хроматографическое разделение</a> радиоизотопов <a href="/info/2346">редкоземельных элементов</a> <a href="/info/1660286">после отделения</a> эрбия, <a href="/info/572253">облученного протонами</a> с энергией 660 Мэе, <a href="/info/1618449">методом распределительной хроматографии</a>. Катионит дауэкс-50Х8 (12—15 меш) [188]

Библиография для Методы хроматографического разделения на катионитах: [c.238]   
Смотреть страницы где упоминается термин Методы хроматографического разделения на катионитах: [c.394]    [c.353]    [c.91]    [c.317]    [c.206]   
Аналитическая химия алюминия (1971) -- [ c.0 ]

Аналитическая химия алюминия (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Методы хроматографические

Методы хроматографического разделения

Разделение хроматографическое катионов

Хроматографическое разделение на катионитах



© 2025 chem21.info Реклама на сайте