Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий карбонатом бария

    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]


    Для улучшения свойств лакокрасочных материалов и эксплуатационных характеристик лакокрасочных покрытий (прочности, влаго-, свето- и термостойкости), а также для экономии пигментов в состав красок вводят наполнители (25—50% от массы пигмента). Наполнителями служат неорганические природные (мел, слюда, тальк, каолин) и синтетические (оксид алюминия, гидроксид алюминия, карбонат бария) вещества. Наиболее часто используют белые наполнители серые и цветные наполнители находят ограниченное применение. Укрывистость пигментов при введении наполнителей практически не ухудшается. [c.213]

    Для визуального наблюдения осадочных хроматограмм желательно, чтобы носитель имел светлую окраску. В качестве носителей применяют силикагель, крахмал, окись алюминия, гидроокись алюминия, сернокислый барий, кварц, асбест, аниониты ТН, ММГ-1, катиониты МСФ, СБС, двуокись кремния, двуокись титана, карбонат кальция, стеклянный порошок, отбеливающую глину, бентонит, сульфоуголь. Можно применять и другие пористые среды, например песок, кизельгур, гипс и другие вещества. [c.258]

    Свободные металлические платиновые катализаторы не очень удобны в обращении, требуют специальных предосторожностей при хранении, в процессе получения трудно воспроизводимы по активности. Лучше в этих отношениях платиновые катализаторы на носителях, или поверхностные катализаторы. Применяют разнообразные носители активированный уголь, оксид алюминия, силикагель, сульфаты и карбонаты бария, кальция и других металлов, асбест, пемзу, кизельгур и др. Обычно при приготовлении поверхностных платиновых катализаторов металл осаждают на носитель из раствора соли, в котором суспендирован или которым пропитан носитель (например активированный уголь или асбест соответственно). Как и при получении платиновой черни, соль часто восстанавливают формалином. Весьма активен катализатор Р1-С, приготовленный непосредственно перед гидрированием путем восстановления хлороплатиновой кислоты борогидридом натрия в этаноле в присутствии активированного угля. [c.19]

    Такие вещества, как карбонат (гидрокарбонат) кальция, карбонат бария, кремнезем, некоторые соединения алюминия, способны образовывать химические соединения с минеральной матрицей камня. Это способствует его укреплению. [c.93]

    В качестве носителей чаще всего применяются такие соединения. Которые в дальнейшем не мешают определению или легко удаляются. Хорошими носителями для выделения следов урана являются гидроокиси многих металлов, обладающие рыхлым строением и большой поверхностью. Гидроокиси железа, алюминия, кальция, маг-йия, олова, тория, циркония и титана были рекомендованы для соосаждения с ними малых количеств урана [8, 19]. В качестве носителей для отделения следов урана могут применяться также перекись тория, карбонат бария, фторид кальция [8]. Соосаждение с органическими осадками также предлагалось для выделения следовых количеств урана [126]. [c.283]


    Алюминия сульфат Алюмокалиевые квасцы Аммония нитрат Аммония роданид Аммония сульфат Аммошзя карбонат Аммония ацетат Аммония фторид Аммония гидрофосфат Аммония хлорид Аммония бихромат Аммония персульфат Бария нитрат Бария vльфaт Бария карбонат Бария ацетат Бария хлорид Висмута нитрат Висмута сульфат Железа (II) сульфат Железа (II) хлорид Кадмия оксид Кадмия сульфат Кадмия хлорид Калия боргидрид Калия нитрат Калня бихромат Калия гсксациапо-(II) феррат [c.20]

    В десяти пронумерованных пробирках находится по 20 мл 0,1М растворов следующих веществ хлорида бария, хлорида калия, сульфата натрия, нитрата магния, ортофосфата натрия, нитрата свинца (И), гидроксида калия, гидроксида бария, сульфата алюминия, карбоната натрия. [c.139]

    Когда отделяемое количество урана не обеспечивает осаждения его из раствора с образованием самостоятельной твердой фазы в связи с недостаточной его концентрацией в растворе, или если выделение имеет место, но вследствие некоторой, хотя и незначительной растворимости выделяемого соединения значительная часть его остается в растворе или удерживается в виде коллоидных частиц, то в таких случаях образующееся соединение урана выделяют из раствора с другим труднорастворимым соединением, являющимся носителем В качестве носителей чаще всего применяются такие соединения Которые в дальнейшем не мешают определению или легко удаляются Хорошими носителями для выделения следов урана являются гид роокиси многих металлов, обладающие рыхлым строением и боль Шой поверхностью. Гидроокиси железа, алюминия, кальция, маг йия, олова, тория, циркония и титана были рекомендованы для со осаждения с ними малых количеств урана [8, 19]. В качестве носи Телей для отделения следов урана могут применяться также пере Кись тория, карбонат бария, фторид кальция [8]. Соосаждение с органическими осадками также предлагалось для выделения сле-Довых количеств урана [126]. [c.283]

    Метод отделения, основанный на осаждении карбонатом бария (стр. 108), дает хорошие результаты, но его редко можно применять, если осаждается один алюминий. [c.563]

    М раствора гидроокиси бария. Выпавший осадок карбоната бария отфильтровывают на специальной разборной воронке через фильтр с синей лентой. Фильтр со слегка влажным осадком приклеивают к твердому диску из картона или алюминия и сушат под инфракрасной лампой. Можно помещать слегка влажный фильтр в специальный держатель и высушивать его на воздухе. [c.344]

    В присутствии железа Ренея [245] и специально обработанных палладиевых катализаторов, в отличие от предыдущих, скорость гидрирования заметно снижается после поглощения 1 моль водорода. Но эти катализаторы гораздо менее активны, и процесс приходится вести при высоких температурах и давлениях, а в таких условиях может произойти изомеризация продуктов в /тгрямс-этилены. Поэтому в большинстве методов используются катализаторы из палладия, осажденного на таких носителях, как карбонат бария [246], сульфат бария [168, 247, 248], карбонат кальция [227, 234, 249] или окись алюминия [250], часто с добавками небольших количеств контактных ядов (пиридина [251], хинолина [105. 248. 252—254]). В новейшей литературе [c.54]

    Отделение железа (III) и алюминия от марганца. Этот метод аналогичен методам разделения с помощью ацетата натрия (стр. 85) и с помощью карбоната бария (стр. 85), которые также используются для этой же цели. [c.102]

    В цитированных статьях достаточно подробно приведены результаты исследований целого ряда объектов гидроокисей кальция, бария, магния, алюминия, циркония, карбоната бария и других. Здесь мы дадим в качестве иллюстрации еще два примера. На электронномикроскопических снимках рис. 1 [c.343]

    С карбонатом аммония все же трудно добиться количественного осаждения алюминия, для этого надо поддерживать pH в очень узких пределах [907, 989]. Еще меньше значение метода осаждения с бикарбонатом аммония [882]. Осаждение гидрооксиси алюминия карбонатами бария или кальция также заслуживает шало внимания [1231]. [c.50]

    Действие едкого кали или едкого натра. КОН или NaOH образуют в соответствующих условиях белые аморфные осадки гидроксидов магния, марганца, алюминия и висмута, зеленые — гидроксидов железа (II) и хрома (III), буро-красный — железа (III). При этом наряду с гидроксидами частично образуются осадки карбонатов бария, стронция и кальция, вследствие загрязнения реактивов карбонатами, образующимися при поглощении едкими щелочами двуокиси углерода нз воздуха  [c.37]

    Разделение суспензией карбоната бария. Суспензия готовится. сливание.м растворов хлорида бария и карбоната натрия с таким расчето.м, чтобы небольшое количество хлорида бария оказалось в избытке. В это.м случае суспензия создает в растворе pH 7,25 [1484]. Суспензия позволяет отделить от кобальта катионы трехвалентного железа, алюминия, титана, циркония, хро.ма и урана, а также фосфор и ванадий, если присутствуют перечисленные выше элементы. [c.66]


    Бария-алюминия титанат бария гидроксид [гидроокись Б., баритовая вода водный раствор Ва(0Н)2, едкий барит] бария-кальция алюминат, алюмосиликат, титанат бария карбонат [углекислый Б., витерит (а) — мин., тройной карбонат — 50 % ВаСОг, 45 /о ЗгСОз, 5% СаСОз] нитрат (азотнокислый Б., нитробарит — мин.) оксид (окись Б.) сульфат (сернокислый Б, бариг — мин., белила баритовые, белила бланфикс, бланфикс, тяжелый шпат —мин.) суль- [c.132]

    G. Е. F. L U и d е И и Н. В. К п о w 1 е s [J. Ат. hem. So ., 45, 676 (1923)] тщательно исследовали точность этого метода при использовании его для отделения алюминия, железа и других аналогичных элементов ох марганца, цинка, никеля, кобальта и меди. Они пришли к следующим выводам 1) умеренные количества железа и алюминия могут быть отделены от марганца и никеля аммиаком так же удовлетворительно, как и ацетатом натрия или карбонатом бария 2) при указанных выше условиях отделение железа и алюминия от кобальта, меди и цинка неполно большой избыток клорида аммония улучшает это отделение 3) избыток аммиака и хлорида аммония дает лучшее отделение от меди и цинка, но при этих условиях осаждение алюмжния неполно и отделение от марганца, никеля и кобальта менее удовлетворительно 4) фосфор и ванадий мало мешают отделению, если железо или алюминий преобладают. В противном же случае они образуют нерастворимые соединения с марганцем и мешают не только при отделении аммиаком, но и при отделении ацетатами или карбонатом бария. [c.437]

    Отделение железа, алюминия, тирна и других элементов осаждением их путем установления определенной концентрации ионов водорода в растворе — аммиаком (стр. 102), ацетатом натрия (стр. 103), сукцинатом натрия (стр. 106), окисью цинка (стр. 108) или карбонатом бария (стр. 108). [c.458]

    Из других методов отделения ряда элементов от марганца следует отметить осаждение купферондм (стр. 143), в результате которого железо, титан, цирконий и ванадий могут быть количественно отделены от марганца электролиз с ртутным катодом в разбавленном сернокислом растворе (стр. 165), при котором осаждаются железо, хром, никель и молибден, а марганец оста ется в растворе извлечение железа и молибдена из солянокислых растворов из хлоридов эфиром (стр. 161) и осаждение железа, алюминия и хрома карбонатом бария.  [c.497]

    Эталоны готовят на основе свободной от гафния руды, близкой по составу к анализируемым рудам, а в случае ее отсутствия берут порошок кварца. Гафний в эталоны вводят в виде двуокиси циркония с известным содержанием гафнйя, причем концентрация циркония в двуокиси должна превышать концентрацию гафния примерно в 50 раз. Эталоны и анализируемые пробы разбавляют трехкратным количество угольного порошка, содержащим 4% карбоната бария. Метод позволяет определять до 0,01% Hf с вероятной погрешностью единичного определения 10%. Результаты определений практически не зависят от соотношения основных компонент силикатных руд. Так, например, изменение в довольно широких пределах содержания в рудах окислов магния, кальция, алюминия, а также полевого шпата не приводит к систематическим ошибкам в результатах для гафния (табл. 16). [c.175]

    С помощью не диссоциирующего в электроде фторида натрия. определяли примеси в графите методом фракционной дистилляции [НИ], с добавкой карбоната бария —малые содержания алюминия в закиси-сжися урана [129]. [c.149]

    Г идролиз, реагенты алюминия оксид алюминия изопропоксид. ам.мония карбонат бария гидроксид борная кислота — триметилборат борная кислота — триэтилборат бора трифторид — уксусная кислота [c.47]

    Предложены Методики определения примесей хлорид-иоио В в нитратах калия и алюминия уранилсульфате , вольфраматах и молибдатах кальция и стронция ацетате натрия , иодид-ионов в карбонатах бария, стронция, кальция , литрате и ацетате нат-рия , сульфид-ианов в воде , сульфат- ионов в нитрате алюминия и карбонатах щелочных металлов . [c.134]

    Действие ВаСОз. Свежеосажденный, взмученный в воде карбонат бария выделяет нз растворов солей алюминия при стоянии на холоду. белый осадок гидроокиси А1(0Н)з. [c.242]

    Действие взвеси ВаСОз или ZnO. Свежеприготовленная звесь (см. Алюминий , стр. 242) карбоната бария или окиси щпка выделяет из растворов солей окиси хрома при стоянии, на юлоду или при нагревании, осадок гидроокиси  [c.253]

    Раньше пестицидами служили главным образом неорганические вещества. В настоящее время находят широкое применение более эффективные и менее вредные для человека и сельскохозяйственных животных органические препараты и препараты биологического происхождения (бактериальные, антибиотики и др.). Однако и неорганические яды не утратили своего значения и используются в значительных количествах. Наиболее распространенными неорганическими пестицидами являются соединения фтора — фторсиликаты натрия, калия, аммония, цинка, магния, фторид натрия соли бария, например хлорид и карбонат бария соединения меди — медный купорос и основные сульфаты меди, бордосская жидкость, хлороксид меди цианамид кальция хлораты магния и кальция хлорная известь, железный купорос, сера, полисульфид кальция, тиосульфат итиоцианат (роданид) натрия, сода, известь,фосфиды цинка и алюминия, хроматы натрия, калия, цинка и другие. [c.18]


Смотреть страницы где упоминается термин Алюминий карбонатом бария: [c.5]    [c.3]    [c.19]    [c.7]    [c.273]    [c.93]    [c.119]    [c.212]    [c.226]    [c.7]    [c.272]    [c.108]    [c.314]    [c.47]    [c.675]    [c.33]    [c.121]   
Практическое руководство по неорганическому анализу (1966) -- [ c.563 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.515 ]




ПОИСК





Смотрите так же термины и статьи:

Бария карбонат



© 2025 chem21.info Реклама на сайте