Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепная реакция метана с кислородо

    Получены данные об образовании при низких температурах радикалов, развитии цепных реакций, полимеризации, реакций синтеза н др. Так, при температурах, близких к —196 °С, без предварительного инициирования протекают многие процессы. К ним относятся взаимодействие жидкого водорода с фтором, окисление N0, взаимодействие Оа с Рз с образованием дифторида кислорода и дифторида озона. Соединение ОзРа существует лишь ниже —73 С это очень сильный окислитель. Дифторид кислорода при —183 С быстро реагирует с метаном, твердым бромом и рядом других соединений. [c.174]


    Ускорить обрыв цепей можно введением в реакционную смесь веществ, которые взаимодействуют со свободными атомами и свободными радикалами активнее, чем молекулы исходных веществ, но в результате взаимодействия дают частицы, не способные к реакции продолжения цепи. Такие вещества называются ингибиторами цепных свободно-радикальных реакций. По большей части это достаточно сложные органические молекулы. В качестве простого примера можно привести ингибирование кислородом реакции С1г с недородом или метаном. Кислород легко реагирует с атомом С1, образуя относительно стабильное, хотя и валентно-ненасыщенное соединение СЮг  [c.404]

    Условия и механизм появления оксида углерода(П) могут происходить, предположительно, по следующей схеме. Горение углеводородного газа, основу которого составляет метан, проходит стадии последовательных превращений метан-формальдегид-оксид углерода(П)-оксид углерода(1У). При неблагоприятных условиях (недостаток кислорода, охлаждение зоны горения, качество предварительной подготовки газовоздушной смеси) цепная реакция может оборваться и в продуктах горения будут содержаться оксид углерода(П) и альдегиды. [c.206]

    В некоторых случаях (цепные реакции, см. разд. 11.4) скорость взаимодействия так велика, что происходит взрыв. Например, со взрывом реагируют смеси кислорода с водородом, метаном, оксидом углерода(П)  [c.254]

    Н. Н. Семеновым показано, что зарождение цепной реакции горения метана происходит следующим образом. В присутствии кислорода метан легко отдает один из атомов водорода с образованием радикала СНз [c.71]

    Известно, что поверхность реактора оказывает существенное влияние на протекание реакции окисления метана [1, 15] увеличение отношения площади поверхности к объему реактора способствует увеличению выхода формальдегида, тормозя его цепное окисление. Нами был проведен ряд опытов в реакторе, в котором отношение поверхности к объему было увеличено приблизительно в 10 и 100 раз по сравнению с прежним, составлявшим 15 смГ . При этом для набивки реактора использовался песок и гранулированная окись алюминия. На рис. 7 приведены графики зависимости выхода формальдегида от температуры реакции окисления метана кислородом воздуха для двух значений соотношения воздух метан, полученных в реакторе с неразвитой поверхностью (сплошные кривые). Точки около этих кривых соответствуют результатам опытов в реакторе с развитой поверхностью. Видно, что величина поверхности не играет заметной роли при проведении реакции окисления метана в плазменной струе. [c.128]


    Согласно приведенной схеме окисление метана молекулярным кислородом протекает по радикально-цепному механизму с вырожденным разветвлением цепей. Окисление метана происходит главным образом через стадию образования метилпероксильных радикалов СНаОО, которые далее участвуют в реакциях по различным маршрутам. Кинетика процесса характеризуется коротким индукционным периодом (доли секунды) на начальной стадии окисления и последующим быстрым ускорением в развившейся реакции, переходящей в воспламенение. В области максимальной реакции метан в основном (более 90 %) расходуется по реакции (5). [c.354]

    Применение Бодлендером принципа цепных реакций к процессам аутоксидации несомненно является удачным углублением теории Баха-Энгле-ра в определенных случаях. Дальнейшим этапом развития этих идей является разработанная Н. Н. Семеновым теория разветвляющихся цепных реакций. Но далеко не все реакции аутоксидации носят цепной характер, как это показывает пример окисления трифенилметила. Из того, что непременным условием всякого окислительного процесса при обыкновенной температуре является наличие в окисляющемся веществе свободной энергии в количестве, достаточном для активирования молекулы кислорода, вытекает, что нельзя делать заключения на основании процесса окисления насыщенного соединения при повышенной температуре о механизме окисления его при обыкновенной температуре, ибо энергетическое состояние насыщенного соединения при повышенной температуре далеко не то, что при обыкновенной. Исследуя диссоциацию насыщенных углеводородов при повышенной температуре в отсутствии кислорода, Нюит нашел, например, что гексафенилэтан около 500° распадается на метан, водород и ненасыщенные соединения. Нет никакого сомнения, что активирование молекулы насыщенного углеводорода, начало его распада на ненасыщенные элементы происходит при еще более низкой температуре. А из этого следует, что насыщенные углеводороды находятся при повышенной температуре в таком же состоянии, как ненасыщенные при обыкновенной, и с молекулярным кислородом реагируют, как последние, т. е. присоединяют молекулу с первичным образованием перекиси. Механизм первоначальной реакции в обоих случаях один и тот же, но дальнейший ход ее различен, так как образовавшаяся перекись реагирует при повышенной температуре быстрее и иначе, чем при обыкновенной. То же относится и к другим продуктам реакции. Поэтому при горении водорода из первично образовавшейся перекиси водорода может получиться гидроксил, который нри действии атомного водорода на молекулярный кислород при обыкновенной температуре не образуется. [c.133]

    Атомный кислород дает такие атомные пламена при взаимодействии с высшими углеводородами и большим количеством других органических соединений, включая метиловый спирт и формальдегид по данным Хартека и Копша [127], он не дает пламен с метаном, водородом и окисью углерода, а реагирует с этими веществами лишь очень медленно. Отсутствие заметной скорости реакции в случае метана должно рассматриваться как опровержение модифицированной гидроксиляционной теории, предложенной Норришем [215], согласно которой окисление метана происходит по цепному механизму с участием атомов кислорода. [c.92]

    При более высокой температуре тиоэфиры без катализатора окисляются кислородом с образованием сложной смеси веществ. Например, основными продуктами реакции газофазного окисления диметилсульфида при 250°С являются [238, 715, 749] двуокись серы, формальдегид, вода, окись углерода, муравьиная кислота, метиловый спирт, метан-сульфокислота, сероокись углерода в очень небольшом количестве образуется диметилсульфоксид и диметилсульфон. Процесс протекает по свободнорадикальному цепному механизму, всего скорее, через стадии образования радикалов H3S H2, НО2 и их последующих превращений [747, 748]. [c.257]


Смотреть страницы где упоминается термин Цепная реакция метана с кислородо: [c.919]    [c.108]    [c.144]    [c.144]    [c.84]    [c.112]    [c.921]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Цепные реакции

Цепные реакции Реакции цепные



© 2024 chem21.info Реклама на сайте