Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жаропрочность сплавов

    Жаропрочные сплавы требуют активированных СОЖ. [c.246]

    Как самый тугоплавкий металл, вольфрам входит в состав ряда жаропрочных сплавов. В частности, его сплавы с кобальтом н хр.о-мом — стеллиты — обладают высокими твердостью, износоустойчивостью, жаростойкостью. Сплавы вольфрама с медью и с серебром сочетают в себе высокие электро- и теплопроводность, и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки. [c.661]


    Ядерные излучения нашли своеобразную область применения в форме метода радиоактивационного анализа. В ряде областей новой техники требования к чистоте материалов намного превосходят все пределы прежних требований в этом отношении. Допустимые содержания некоторых примесей оказываются лежащими в пределах 10" —10 % и даже ниже. Таковы требования к важнейшим полупроводниковым материалам ( 55) и жаропрочным сплавам, к материалам, применяемым при сооружении ядерных реакторов. В последнем случае необходим тщательный контроль [c.557]

    Другие требования техники безопасности типичны для высокотемпературных процессов. Они связаны со снил ением прочности оборудования из-за образования окалины или разогрева реактора до температур, превышающих точку ползучести металлов. У многих металлов, особенно у жаропрочных сплавов, происходит быстрое снижение прочности иа разрыв в достаточно узком температурном интервале. [c.144]

    Молибден является весьма ценным компонентом жаропрочных сплавов и, кроме того, сам пспользуется для создания сплавов на его основе. Высокая температура плавления и хорошие механические свойства делают эти сплавы весьма перспективными. Молибден и вольфрам используются в вакуумных приборах и в виде проволоки и фольги для электродов, в обычных лампах накаливания и т. п. Большая плотность вольфрама дает возможность применять его в гироскопических приборах. Вольфрам в сплавах повышает твердость и износостойкость. [c.289]

    Трещины ползучести распространяются по границам зерен, встречаются на деталях из жаропрочных материалов и других сплавов, работающих при высоких температурах. Основные причины их образования — относительно высокие статические напряжения при кратковременном действии нагрузки, перегрев материала, длительное действие относительно низкой статической нагрузки, наклеп на поверхности деталей из жаропрочных сплавов. [c.191]

    Трещины термической усталости по внешнему виду похожи на термические трещины. Они характерны для деталей из жаропрочных сплавов, возникают в результате циклически изменяющегося теплового состояния (нагрева и охлаждения). [c.191]

    Холодное волочение медной проволоки, обработка резанием сталей Хонингование, суперфиниширование, шлифование чугунов и сталей Шлифование легированных сталей, жаропрочных сплавов, заточка режущего инструмента и игольных заготовок Абразивная обработка чугунов и сталей [c.405]


    Лезвийная и абразивная обработка труднообрабатываемых высоколегированных сталей, жаропрочных сплавов [c.405]

    Титан и его сплавы хорошо обрабатываются давлением всеми известными способами ковкой, прокаткой, штамповкой и др. Титан обладает высокой температурой плавления 1670°С, что определяет возможность разработки жаропрочных сплавов на его основе. Малый коэффициент линейного расширения обеспечивает надежность использования титана в условиях периодического изменения теплового состояния. Однако он неудовлетворительно работает при трении из-за его склонности к задиранию и заеданию. Значительного повышения износостойкости титана и его сплавов удалось достигнуть комплексным насыщением хромом и кремнием парофазным методом [11]. При этом повысилась износостойкость титана более чем в 3—5 раза, а коэффициент трения [c.66]

    Использование актиноидов и пх соединений связано в основном с проблемой использования внутриатомной энергии. Торий представляет интерес как легирующая добавка для получения жаропрочных сплавов. [c.559]

    К жаропрочным сплавам относятся инконель (73% N1, 15% Сг, 7% Ре, 2,4% Ti, остальное А1, ЫЬ, Мп и 81), нимоник (59% N1, 20% Сг, 16% Со, 2,3% Т1, 1,4% А1, остальное Ре, Мп, Б ). Жаропрочностью, жаростойкостью и высоким электросопротивлением обладают хромоникелевые сплавы — нихромы-, некоторые из них (например, состава 80% N1 и 20% Сг) устойчивы к газовой коррозии до 1000—1100°С. Нихромы широко применяются в качестве нагревательных элементов в электротехнике. Высокой химической устойчивостью обладает монельметалл (твердый раствор N1 с 30% Сг), применяемый в химическом аппаратостроении и в домашнем обиходе. Широкое распространение имеют магнитные сплавы никеля типа алнико (см. стр. 634) алии (22—24% N1, 11—14% А1, остальное Ре) и др. [c.647]

    Ниобий — один из основных компонентов многих жаропрочных и коррозиониостойких сплавов. Особенно большое значение имеют жаропрочные сплавы ниобия, которые применяются в производстве газовых турбин, реактивных двигателей, ракет. Ниобий вводят также в нержавеющие стали. Он резко улучшает их механические свойства и сопротивляемость коррозии. Стали, содержащие от 1 до 4% ниобия, отличаются высокой жаропрочностью и используются как материал для изготовления котлов высокого давления. Сталь с добавкой ниобия — превосходный материал для электросварки стальных конструкций ее применение обеспечивает необычайную прочность сварных швов. [c.653]

    Главная масса никеля идет на производство различных сплавов с железом, медью, цинком и другими металлами. Присадка никеля к стали повышает ее вязкость и стойкость против коррозии. Сплавы на основе никеля можно разделить на жаропрочные, магнитные и сплавы с особыми свойствами. Жаропрочные сплавы никеля используются в современных турбинах и реактивных двигателях, где температура достигает 850—900 °С таких температур сплавы на основе железа не выдерживают. К важнейшим жаропрочным сплавам никеля относятся нимоник, инконель, хастеллой. В состав этнх сплавов входит свыше 60% никеля, 15—20% хрома и другие металлы. Производятся также металлоксрамические жаропрочные сплавы, содержащие никель в качестве связующего металла. Эти снлавы выдерживают нагревание до 1100 °С. Широко применяются для изготовления элементов электронагревательных устройств сплавы типа нихром а, простейший из которых содержит 80% никеля и 20% хрома. [c.694]

    Процесс сварки труб из центробежнолитых трубных заготовок отличается рядом особенностей вследствие специфических свойств аустенитных хромоникелевых сталей. Аустенитная сталь типа НК-40 характеризуется электрическим сопротивлением, примерно в 5 раз большим, чем обычных углеродистых сталей, и низкой теплопроводностью металла, что определяет выбор методов и режимов сварки. Химический состав хромоиикелевых сталей также оказывает влияние на происходящие металлургические процессы сварки. Высокое содержание хрома в сплаве делает его взаимодействие с кислородом и рядом оксидов (МпО п 5102) достаточно активным, что вызывает интенсивные марган-цево-кремневосстановительные процессы, сопровождающиеся окислением значительных количеств хрома. Другие элементы, входящие в жаропрочный сплав (Ре, N1, Мп, 51, 5, Р, N и др.), при сварке могут образовывать различные эвтектики, карбиды, нитриды, интерметаллиды. Образование в металле новых фаз вызывает появление структурных напряжений, особенно металлов центробежнолитых трубных заготовок с характерной анизотропной дендритной структурой. Наконец, при сварке в результате воздействия высоких температур происходит укрупнение зерен в структуре металла и его разупрочнение при комнатной температуре, что ухудшает эксплуатационные свойства труб. [c.33]

    Хорошие результаты достигаются при плавке жаропрочных сплавов на никельхромовой основе, легированных титаном и алюминием, в вакууме при остаточном давлении 1 -Ю" —1 -Ю" Па. В этих условиях возможно восстановление углеродом таких оксидов как А12О3, 8 02, Т10а, СгаОз, которые без вакуума восстановить практически не удается. [c.79]


    Дульнев Р.А. Сопротивление жаропрочных сплавов термической ус-Tajfo TH в связи с формой температурного цикла. - В кн. Прочность при малом числе циклов. - М. Наука, Т963, с.151-161. [c.80]

    Влияние серы на коррозпонную агрессивность топлив прп высоких температурах (от 600° С и выше) изучено недостаточно. Установлено [50], что интенсивность коррозии большинства жаропрочных сплавов продуктами сгорания дистиллятных топлив, содержащих до 1% серы, даже несколько меньше, чем при сжигании малосернистых топлив. Повышенное содержание серы в топливе до 1,4—1,6% приводит к некоторому усилению коррозионного действия. В остаточных топливах в присутствии ванадия сера итенсифи-цирует ванадиевую коррозшо железных сплавов, не влияя на коррозию сплавов на никелевой основе [39]. [c.273]

    Использование кобальта в технике. Кобальт используется как легирующий металл в сталях, придавая им особые свойства (стали нержавеющие, инструментальные, с особыми магнитными свой-стками). Кобальт также является основой жаропрочных сплавов, леп ,юваниь х титаном, хромом, молибденом и другими металлами, Большое количество кобальта иснользуется в производстве сверхтвердых материалов на основе карбидов титана и вольфрама. [c.315]

    Использование никеля в технике. Большое количество никеля используется для никелирования, т. е. обработки поверхностей из-де.чий из других мегаллов. Никель добавляют как легирующий материал в стали, придавал им особые свойства он является основой некоторых жаропрочных сплавов его сплавы с медью обладают ценными свойствами. Таковы константан и никелин, использую-Н1,исся в качестве материала для электропроводов, гейзильбер — иеокисляюшийся сплав, содержащий кроме никеля и меди также и цинк. Никель применяется также в сплавах с алюминием. [c.318]

    Основные элементы, которыми легируют деформируемые алюминиевые сплавы для обеспечения их упрочнения при термической обработке — медь, кремний, магний, цинк. В некоторые сплавы добавляют литий, церий, кадмий, цирконий, хром и другие элементы. К наиболее важным и распространенным сплавам, упрочняемым закалкой с последующим старением, относятся сплавы систем А1—Си—Mg типа дюралюминий, А1—Мд—51, ави-аль А1—2п—Mg—Си (высокопрочные сплавы Ов бОО— 700 МН/м ), А1—М —2п (самозакаливающиеся свари--ваемые сплавы, сгв=400—450 MH/м ), не требующие термической обработки после сварки, А1—Си—Сс1— (жаропрочные сплавы, Ов = 360—400 МН/м ) после 1000 ч выдержки при температуре 180°С. К высокопрочным сплавам относятся сплавы В93, В95, В96 системы А1—2п—Mg—Си, сплав ВАД23 системы А1—Си—Мп— С(1 и, частично, в зависимости от применяемой термической обработки и вида полуфабриката, сплавы. Д16, Д19, системы А1—Си—Mg, сплав АК8 системы А1—Си—Mg—51. Наибольшей прочностью при комнатной температуре обладают сплавы В93, В95, В96 и ВАД23. Сплавы Д16 и Д19 обладают меньщей прочностью при комнатной температуре, чем сплавы В93, В96, В95. Однако их преимущество заключается в большей жаропрочности и меньщей чувствительности к коррозии. Сплав ВАД23 сохраняет относительно высокие прочностные характеристики после длительных нагревов до 160— 180°С. Исходя из характеристик алюминиевых сплавов следует применять сплавы В93, В95, В96 для конструкций, работающих до температуры 100°С, при этом в конструкции должны отсутствовать концентраторы напряжений, расположенные в плоскости, перпендикулярной к действию силы. Для нагружения конструкций, работаю- [c.49]

    Смазочно-охлаждающие жидкости В-296, В-32к и В-35 готовят на маловязкой нефтяной основе с добавлением хлорпараф ина (2—46%), диалкилдитиофосфата цинка (5—12%), многозольного сульфоната кальция (4—10%), окчсленного петролатума (2— 15%) и некоторых других присадок. Указанные СОЖ применяют при обработке резанием нержавеющих сталей, жаропрочных сплавов и других труднообрабатываемых металлов, при операциях со сравнительно небольшим тепловыделением, где необходимо предотвратить налипание обрабатываемого материала нз инструмент [c.388]

    С. Мухина, Е. И. Никитина, Л. М. Буданова, Р. С. Володарская, Л. Я. Поляк, А. А. Тихонова. Методы анализа металлов и сплавов. Обороигиз, 1959, (528 стр,), 15 книге рассмотрены методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов и н1лаков, а также сплавов на основе алюминия, магния и меди. Приведены методики определения большого количества легирующих элементов в этих материалах. Вводная глава содержит характеристику физико-химических методов анализа. [c.491]


Смотреть страницы где упоминается термин Жаропрочность сплавов: [c.541]    [c.602]    [c.610]    [c.612]    [c.613]    [c.614]    [c.616]    [c.617]    [c.625]    [c.630]    [c.631]    [c.635]    [c.639]    [c.640]    [c.642]    [c.643]    [c.645]    [c.652]    [c.658]    [c.659]    [c.291]    [c.238]    [c.66]    [c.162]    [c.149]    [c.233]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Жаропрочность



© 2025 chem21.info Реклама на сайте