Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические характеристики биохимических процессов

    Термодинамические характеристики биохимических процессов [c.19]

    Глава II ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ БИОХИМИЧЕСКИХ ПРОЦЕССОВ [c.17]

    Для объективной оценки реакционной способности порфиринов и металлопорфиринов по отношению к различным по природе молекулам большое значение имеет наличие достоверных термодинамических характеристик процессов молекулярного комплексообразования. Информацию о термодинамике процессов специфических взаимодействий в растворах порфиринов в основном получают при помощи спектроскопических методов (ЯМР, ПМР, ЭСП) [4]. Однако обобщение термодинамических результатов, полученных различными спектроскопическими методами, приведенное авторами в обзоре [4], свидетельствует о трудностях, с которыми зачастую сталкивается исследователь при попытке выяснения четкой взаимосвязи структуры и биохимической активности металлопорфиринов. Решение данных вопросов осложнено рядом причин, обусловленных методологическими особенностями. Например, необходимостью проведения исследований на фоне "инертных" растворителей, влияние которых на растворенное вещество, как правило, нуждается в уточнении нерешенностью вопросов о стандартизации термодинамических величин из-за отсутствия данных по активностям компонентов раствора недостаточной чувствительностью методов к сольватным структурам при достижимых концентрациях порфиринов в растворах. Следствием этого являются существенные расхождения в термодинамических характеристиках, полученных разными авторами с использованием спектроскопических методов для одинаковых систем [4]. Необходимо отметить, что в большинстве случаев анализ экспериментальных данных по процессам аксиальной координации в трехкомпонентных системах металлопорфирин-молеку-лярный лиганд-растворитель невозможен без привлечения сведений об особенностях сольватации реагентов данным растворителем, которые, как правило, в научной литературе отсутствуют. [c.299]


    Учебник Основы биологической химии обладает целым рядом достоинств. Его отличают широкий подход к проблемам биологической химии, дух современности, полнота материала и умелое его изложение. Основное отличие этой книги от большинства учебников биохимии состоит в том, что наряду с обычными сведениями по химическому строению биологически активных соединений и их метаболизму в книге неизменно приводится молекулярно-биологическая интерпретация биохимических процессов — их термодинамические и кинетические характеристики, сведения о влиянии специфических особенностей пространственной структуры биополимеров на механизм реакций и т. д. Молекулярно-биологический уклон книги не случаен, т. е. определяется пе только научными вкусами авторов. Он отражает тот факт, что граница, разделяющая современную биохимию и молекулярную биологию, весьма условна и не всегда различима. Хороиго известно, что молекулярная биология возникла из некоторых разделов биохимии однако очень большую роль в ее формировании сыграли и другие [c.5]

    Для получения полного представления о биохимических процессах часто бывает необходимо определить равновесные (термодинамические) характеристики отдельных реакций или систем реакций. В этой главе изложены основы протолнтического равновесия и равновесия с участием ионов металлов, а также методы расчета изменений основных термодинамических функций — свободной энергии О (или Р), энтальпии Н и энтропии 8. Кроме того, приведены отдельные примеры расчета биохимически важных равновесий. [c.17]

    Современная биология достигла значительных успехов в познании многообразных проявлений живого фундаментальных основ, общих закономерностей организации и эволюции жизни на Земле. Дальнейший прогресс науки о жизни требует не только все более глубокого проникновения в сущность процессов взаимодействия вещества и энергии, но и исследования информационных взаимодействий в биологических системах. Основоположник этого нового направления в изучении свойств живого А. Г. Гурвич но азал возможность передачи информации из одной клетки в другую фотонами электромагнитного поля н высказал гипотезу о существовании в живых системах полей, которые он назвал биологическими . К сожалению, это направление в наше время развивается недостаточно интенсивно. Проблемы передачи биологической информации, записи и хранения ее как в клетках, таки мея ду клетками и органами в настоящее время приобретают первостепенное значение. Управление известными обменно-трофическими процессами, преобладающими как внутри клеток, так и в целом организме животных и человека, невозможно объяснить только нейрогормональными и гуморальными (биохимическими), а также известными биофизическими факторами (изменение различных потенциалов, градиентов и др.). Необходимы поиски иных, более эффективных каналов связи. Вместе с тем егце в ранних работах отечественных ученых (А. Г. Гурвич, Э. С. Бауэр, В. И. 13ериад-ский, А. Л. Чижевский и др.) обоснованно поднимались вопросы термодинамической характеристики процессов жизни, предпринимались попытки изучения информационных механизмов, специфически присущих жизненным явлениям. Факт существования сверхслабого электромагнитного излучения в настоящее время общепризнан и экспериментально обнаружен у всех исследованных клеток растений и животных. Как оказалось, так называемое спонтанное свечение биологических объектов является универсальным свойством живых клеток [Тарусов, 4965 Журавлев и др., 1961, 1975 Мамедов, 1976 Баренбойм, 1966 Владимиров, 1966 Марченко, 1973 Коиев, 1965 Рорр, 1979]. Дискуссионным остается положение о сигнальной функции этого излучения. [c.3]


    О. Шмидт пишет [12] Поразительно сколь экономична биологическая система, в которой лишь 10—20% доступной ей метаболической энергии используется на познание окружающей среды, принятие соответствующих решений и выработку собственных инструкций . При этом, очевидно, что ценность и продуктивность деятельности биологической системы вовсе не определяется тем, затрачены ли 10 или 20% энергии. Поэтому и энергетические, и энтропийные характеристики не могут принести пользы там, где при одном и том же значении термодинамических параметров стабильность изменяется в широких пределах в зависимости от совершенства саморегулирующих устройств. Поэтому едва ли есть смысл пытаться вложить в понятие энтропии какое-то новое содержание с тем, чтобы все-таки использовать ее в биологии. Здесь мир, если можно так выразиться, энтропийно вырожденных систем, и для исследования их было бы целесообразно изучить общую проблему отношений между процессом и создаваемой им структурой. Единство биохимического плана строения объясняется тем, что лишь определенные исходные вещества могли обеспечить развитие систем от ранга к рангу. Развивающиеся системы высших рангов приобретают все новые качества, совместимые с их устойчивостью, и создается своеобразная картина сключительно строгий отбор, возможно уникальный, исходных веществ обеспечивает развертывание огромного разнообразия высших форм. [c.36]

    Постгшовка проблемы. В предыдущих разделах были представлены методы вычисления скорости продуцирования энтропии в открытых системах и описано их применение в изучении свойств биологических объектов. Общее заключение, которое следует из приведенного материала, состоит в том, что хотя нахождение диссипативных функции р (У.3.1), (У.З.б) и имеет значение для энергетической характеристики системы, однако определить на этой основе направление ее эволюции можно только в области линейной термодинамики, где справедливы соотношения (У.3.3), (У.З.б). Это обстоятельство, конечно, существенно ограничивает область применения термодинамики необратимых процессов в анализе свойств биологических систем, которые находятся вдали от термодинамического равновесия. Поэтому вдали от равновесия однозначных выводов о значениях величины р при приближении системы к стационарному состоянию сделать нельзя. Это особенно важно для биохимических превращений, где наиболее характерны реальные переходы с изменением значения термодинамического потенциала АС порядка 4-8 кДж/моль, в то время как применимость линейных соотношений в химических реакциях ограничена пределами изменения АО 0,8 кДж/моль и где, кроме того, существуют дополнительные кинетические ограничения. [c.145]


Смотреть страницы где упоминается термин Термодинамические характеристики биохимических процессов: [c.339]    [c.11]    [c.227]    [c.377]    [c.7]   
Смотреть главы в:

Основы биологической химии -> Термодинамические характеристики биохимических процессов


Основы биологической химии (1970) -- [ c.17 , c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Биохимические процессы

Процесс термодинамический

Термодинамические характеристики процессов

Характеристика процесса КЦА



© 2024 chem21.info Реклама на сайте