Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия понятие

    Гиббс ввел понятие свободная энергия . (Необходимость введения этого понятия была обусловлена тем, что измерить изменение величины свободной энергии легче, чем измерить изменение энтропии.) Любая химическая реакция сопровождается изменением свободной энергии системы. Изменение теплосодержания строго соответствует уменьшению свободной энергии и увеличению энтропии. Поскольку обычно самопроизвольные реакции сопровождаются выделением теплоты, то теплосодержание системы при протекании таких реакций уменьшается. Однако в некоторых, хотя и считанных случаях изменение свободной энергии и энтропии бывает таким, что теплосодержание системы увеличивается, и тогда самопроизвольная реакция идет с поглощением энергии. [c.113]


    Очень часто понятие энтропии используется в качестве меры деградации (рассеяние) энергии. Это положение можно проиллюстрировать следующим образом  [c.78]

    В дальнейшем понятие энтропии развивалось и расширялось. Оно вышло за пределы термодинамики и приобрело другую трактовку. В настоящее время энтропия трактуется как мера неупорядоченности состояния системы. [c.38]

    Это значит, что теорема Карно является следствием существования энтропии и может рассматриваться как одна из формулировок принципа существования энтропии. Понятие теплорода в смысле, эквивалентном понятию энтропии оказалось полезным только для доказательства теоремы Карно. Это понятие, конечно, не верно в применении к теплоте, как форме передачи энергии. [c.64]

    Для начала рассмотрим появление (генезис) понятия "энтропия". Понятие - "энтропия" было введено Карно применительно к идеальным тепловым машинам и формулировалось следующим образом  [c.200]

    Итак, физический смысл энтропии достаточно сложен и раскрывается сначала в термодинамике и далее в статистической физике энтропия — понятие не априорное, понятие не поддающееся непосредственному восприятию. Принцип энтропии Клаузиуса состоит из двух частей  [c.111]

    Рассмотренные выше положения общей теории разделения, несмотря на кажущуюся очевидность, не нашли широкого применения. Более того, в процессе экспериментальной работы обнаружились отклонения рассчитанных значений от наблюдаемых. Лучшее согласие с экспериментальными данными получают при замене функции энтропии понятием и функцией, известной под названием разделительного потенциала. [c.119]

    Чтобы справиться со всеми этими трудностями, мною в 1950 г. было предложено новое толкование теплового явления. Именно с введения взамен энтропии понятия термического заряда фактически и начиналась ОТ, это видно, например, из работы [11, с. 142—144]. [c.272]

    Энтропия. Понятие энтропии системы вводится в форме утверждения, что изменение энтропии равно количеству тепла, поглощенного при обратимом процессе, деленному на абсолютную температуру  [c.98]

    Это еще одно определение понятия энтропии. [c.185]

    Реакция сопровождается уменьшением энтропии системы. Поэтому согласно AG = АН — TAS с увеличением температуры AG реакции приобретает положительное значение и процесс протекает влево, Этот пример иллюстрирует относительность наших понятий о сравнительной окнслительно-восстановительной активности веществ. В рассматриваемом случае при невысоких температурах более сильным окислителем оказывается кислород, при высоких температурах — хлор. [c.289]

    Понятие энтропия с первого взгляда трудно усвоить. Попытаемся сделать его более конкретным. Прежде всего, энтропия является функцией состояния. Аналитическое выражение этого положения дается в уравнении (П.54). Следовательно,.изменение этой функции зависит не от пути перехода, а только от значения энтропии начального и конечного состояния при обратимом процессе  [c.75]


    Первые работы Дж. Гильдебранда связаны с обоснованием закономерностей идеальных растворов. Им показано, что если при образовании раствора теплота растворения кристаллов соответствует скрытой теплоте плавления и растворы образуются без изменения суммы объемов, растворы следуют закону Рауля [61]. Рассматривая механизм внутримолекулярного взаимодействия в растворе, Дж. Гильдебранд ввел понятие о внутреннем давлении. Жидкости с равными внутренними давлениями образуют идеальный раствор. Жидкости с близкими внутренними давлениями и близкой полярностью взаимно растворимы в широком диапазоне концентраций. Для оценки энергии связи сил межмолекулярного взаимодействия им использованы величины скрытой теплоты испарения. Растворы с дисперсионными силами взаимодействия, у которых теплоты, смешения имеют низкие значения, а изменение энтропии происходит по закону идеальных газов, были выделены в отдельный класс, полу- [c.213]

    Отсюда следует, что энтропия является мерой бесполезного тепла или, как еще иногда ее называют в термодинамике, мерой обесцененной энергии. Однако такое понятие энтропии для изолированных пластовых нефтегазовых систем следует полностью исключить хотя бы потому, что любое приложение тепла (в сторону повышения температуры) к этой системе приводит к увеличению совершения полезной работы по извлечению флюида ИЗ глубин залежи на дневную поверхность. [c.78]

    Важным понятием термодинамики является энтропия. Оно было развито в связи со вторым началом термодинамики для описания относительной эффективности процессов и оценки возможности их осуществления. [c.38]

    Эксергетический метод анализа, основанный на втором начале термодинамики, позволяет оценить степень использования энергии, ее потери, а также получить распределение этих потерь по отдельным аппаратам производства, т. е. выявить наименее эффективные из них. В основе эксергетического анализа лежит понятие эксергии. Эксергия системы в данном состоянии определяется количеством энергии, не характеризуемой энтропией, которое может быть получено от системы или передано ей в результате обратимого перехода системы из данного состояния в состояние полного термодинамического равновесия с окружающей средой [25]. [c.104]

    Одной из основных идей современной физики и химии является понятие о квантованных состояниях нли квантованных энергетических уровнях. Большое значение этих представлений для химии обусловлено тем, что все равновесные свойства газов могут быть вычислены на основании данных об энергетических уровнях их молекул. К этим свойствам относятся термодинамические величины теплоемкости, энтропии, свободные энергии образования и константы равновесия химических реакций. Во многих случаях величины, вычисленные таким образом, точнее, чем найденные экспериментально в других случаях вычисления являются единственно доступным в настоящее время методом получения необходимых данных, так как проведение соответствующих экспериментальных измерений практически невозможно. [c.292]

    Большинству студентов труднее усвоить понятие энтропии ее истолкование как меры упорядоченности системы обычно оказывается более успешным, чем истолкование энтропии как количества теплоты, вводимого в систему обратимым путем. Пример со вселенной из девяти клеточек, которые могут заселяться четырьмя атомами, заслуживает того, чтобы рассмотреть его в аудитории, поскольку он помогает студентам понять смысл закономерностей, касающихся изменений энтропии, которые сформулированы в разд. 16-4. [c.578]

    Когда студенты хорошо усваивают представления об энтальпии и энтропии, введение понятия свободной энергии как их комбинации и его использование для предсказания направления самопроизвольного протекания реакций обычно не вызывают больших трудностей. Расчеты, основанные на использовании свободных энергий образования, настолько напоминают расчеты с энтальпиями, что требуют лишь краткою обсуждения. Однако следует указать, что не все численные величины, приведенные в приложении 3, имеют одинаковый смысл, хотя в расчетах они могут использоваться с одинаковым основанием. Приведенные там энтальпия и свободная энергия каждого вещества относятся к реакции, в которой данное вещество образуется из составляющих его элементов в их стандартных состояниях, тогда как для энтропии приведено ее абсолютное значение для данного вещества при 298 К. Следует обсудить, каким образом третий закон термодинамики дает возможность вычислять абсолютные энтропии веществ и почему нельзя ввести абсолютные энтальпии или абсолютные свободные энергии веществ. [c.578]

    В процессах принятия решения при характеристике и прогнозировании важнейших свойств сложных каталитических систем эффективный прием конструирования алгоритмов для предсказания каталитического действия основан на одном из фундаментальных понятий теории систем — энтропии информации. Применение теории информации к каталитическим системам позволяет дать им универсальную характеристику в виде энтропии информации, открывающую возможность сравнивать между собой каталитические системы различных, в принципе любых типов. В частности, этот подход обеспечивает возможность предсказания свойств данной каталитической системы благодаря выбору тех типов систем, которые по своим возможностям наиболее содержательны для катализа и которые тем самым способны дать наибольшую информацию о свойствах катализаторов, например о характере их активных центров. При этом, как будет показано ниже, информационная энтропия, используемая для анализа атомных структур, оказывается более содержательной, чем обычная термодинамическая энтропия. [c.101]


    Таким образом,, понятие энтропии информации может играть существенную роль в процессах принятия решений при подборе катализаторов. [c.107]

    Понятие об энтропии и введение новой функции в термодинамику было осуществлено на основе формулировок 2-го закона термодинамики и теорем Карно и Клаузиуса. Следует указать, что в равновесно протекающих процессах невозможно отделить самопроизвольные (спонтанные) процессы от несамопроизвольных. В то же время формулировка 2-го закона термодинамики предполагает отделение этих процессов один от другого. В настоящее время для разрещения этого противоречия развивается термодинамика необратимых процессов (И. Р. Пригожин). Классическая термодинамика изучает на основе 2-го закона термодинамики только равновесные процессы и системы. [c.83]

    Эренфест ввел понятие о фазовых переходах разного рода. Порядок (род) фазового перехода определяется порядком производных, испытывающих скачкообразное изменение при изменении параметров состояния вещества. Так, если скачком изменяется свойство, определяемое 1-ой производной, то это будет определять фазовый переход 1-го рода. Для таких переходов изменения энтропии, энтальпии или объема вещества при изменении температуры не равны нулю, а имеют конечное значение и меняются скачком свойства вещества, например, от свойств твердого тела к свойствам жидкости. Первые производные от энергии Гиббса по Г и Р не будут равны нулю для фазовых переходов вещества  [c.166]

    Введем понятие о свойстве вещества — энтропии S. Эта величина определяется формулой Больцмана  [c.176]

    Мы сочли необходимым ввести в курс понятия об энтропии S и ее изменении AS и об изменении изобарно-изотермического потенциала ДО, так как твердо уверены в том, что в настоящее время нельзя излагать химию в вузе, опираясь только на понятие о тепловых эффектах ДЯ. С другой стороны, мы отдавали себе отчет в [c.4]

    В теоретико-информационном подходе к синтезу схем разделения [39—41] используется понятие энтропии, характеризующей неупорядоченность рабочих потоков. Если разделение формально сопоставить с получением информации, то выбор оптимальной схемы равноценен выбору способа, при котором процесс получе- [c.481]

    Аналогично соотношению (1.51) определяем понятие субстанциональной производной энтропии гетерогенной смеси, в которой происходит рост и образование кристаллов (гомогенным, гетерогенным путем)  [c.61]

    Второй закон термодинамики был развит для описания относительной эффективности процессов и оценки возможности их осуществления. Это достигается при применении понятия энтропия ( ). [c.18]

    Состояние системы и направление процессов, протекаюш,их в системе, можно определить с помощью изменения новой термодинамической функции — энтропии. Это понятие было введено в термодинамику Клаузиусом. Энтропия может определяться как мера беспорядка в системе, мера ее однородности в распределении частиц по системе. Чем выше хаос в системе, тем выше значение энтропии, и наоборот. В изолированной системе могут протекать только спонтанные процессы, переводя систему из менее вероятного в более вероятное состояние. [c.82]

    Понятие энтропии, ее обозначение и название было введено в литературу Клаузиусом в 1865 г. Слово энтропия состоит из предлога еп — в и слова trope — превращение, что означает превращение в . ... По физическому смыслу энтропия отражает меру обесцененной энергии или количество энергии, которое может служить только для процесса переноса теплоты, которая бесполезно рассеивается при данной температуре. [c.93]

    Если при исследовании химических и физико-химических процессов с позиций первого закона термодинамики широко используется понятие внутренней энергии, то при исследовании их на базе второго закона термодинамики потребовалось введение новой функциональной величины — энтропии. [c.181]

    Клаузиус ввел понятие энтропии и дал новую формулировку второго закона термодинамики. [c.12]

    Приводимые ниже данные относятся только к растворимости парафина, находящегося в крупнокристаллическом состоянии. Вследствие неоднородности парафина и множества входящих в его состав компонентов понятие о его растворимости является до некоторой степени относительным, поскольку насыщенный раствор наиболее высокоплавких парафинов будет ненасыщенным для находящихся в растворе легкоплавких компонентов.. Кроме того, легкоплавкие компоненты парафина являются растворителем по отношению к высокоплавким компонентам. Растворимость объясняется [41,42] взаимным притяжением молекул растворителя и растворяемого вещества. Современная молекулярная теория растворов базируется на том, что свойства растворов определяются в основном межмолекулярным взаимодействием, относительными размерами, формой молекул компонентов и их стремлением к смешению, которое сопровождается ростом энтропии [43]. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. Силы Ван-дер-Ваальса слагаются из следующих трех составляющих. [c.69]

    Понятие абсолютный ш/ль — спмая низкая из возможных температур — впертые было введено Томсоном (лордом Кельвином) в 1848 г. В признание его приоритета шкала абсолютных температур получила название шкалы Кельвина. В 190(1 г. Нернст показал, что при стремлении температуры к абсолютному нулю все изм- нения состояния системы пе изменяют ее энтропии (третье начало термодинамика), или, другими словами, при помощи конечной последовательности термодинамических процессов нельзя достичь температуры, равной абсолютному нулю. [c.122]

    Исходным понятием является термодинамическая вероятность состояния системы . В главе И (стр. 104) эта величина уже определялась как число микросостояний, т. е. число разных распределений молекул по их состоянию (координаты, скорости, энергия), соответствующее данному макросостоянию или термодинамическому состоянию. Там же было дано уравнение Больцмана (1П, 34) S=AlnlF, связывающее термодинамическую вероятность с энтропией. [c.327]

    Больцман дал очень ясную интерпретацию понятия энтропии, связав ее с упорядоченностью и неупорядоченностью на молекулярном уровне. В приложении 3 наряду со стандартными теплотами образования веществ приводятся также их стандартные энтропии, 5298. Не следует думать, однако, что эти величины получены из больцмановского выражения 5 = /с 1п И . Они определяются в результате калориметрических измерений теплоемкостей твердых, жидких или газообразных веществ, а также теплот плавления и испарения при комнатной температуре и их экстраполяции к абсолютному нулю. (Способы вычисления значений 5 из таких чисто термохимических данных излагаются в более серьезных курсах химии.) Эти табулированные значения Хгдв называют абсолютными энтропиями, основанными на третьем законе термодинамики. Дело в том, что рассуждения, на которых основано их вычисление по данным тепловых измерений, были бы неполными без предположения, называемого третьим законом термодинамики и гласящего энтропия идеального крщ тйлла при абсолютном нуле температур равна нулю. Содержание третьего закона представляется очевидным, если исходить из больцмановской статистической интерпретации энтропии. [c.61]

    Здесь будет рассмотрен второй подход к построению связных диаграмм гидродинамических систем. Как уже упоьшналось, этот подход основан на понятии псевдоэнергетических переменных (когда в качестве силовой переменной может быть использован любой вид переносимой субстанции масса, энергия, импульс, энтропия и т. д.) и инфинитезимальных операторных элементов [2]. [c.178]

    Значение понятия энтропии становится яснее из следующего рассуждения. Нз теплоты, нередаваемон от теплого тела к холодному, п работу может быть превращена только часть, меньшая всей передаваемой теплоты на TAS, где Т — абсолютная температура, а Л5 — изменение энтропии, т. е. связанная энергия. [c.86]

    Принимая условие локального раш овес я в пределах фазы и след я основным положениям механики гетерогенных срсд о понятии субстанциональной производной энтропии среды[2], можно получить выражение диссипативной функции или производства энтропии за счет необратимых внутренних процессов между фазами, которое обычно представляется в виде суммы проичве-дрнпн термодинамических сил на термодинамические потоки. Тогда выражение для диссипативной функции, связанной с межфазым переносом массы, принимает вид [c.235]

    Было бы, конечно, абсурдным предположить, что в приведенных рассуждениях энтропия каким-либо образом создается за счет использования торможения. Введение понятия торможения является только мысленным средством, которое делает возмох<ным определение энтропии вне равновесия в приложении к современным результатам. Это аналогично тому, как определяют переменную ско- [c.75]

    Проверка уравнения (38.42) была проведена примерно на 30 веществах (двухатомные и простые многоатомные молекулы). В большинстве случаев оказалось, что уравнение (38.41) выполняется в пределах точности эксперимента. Однако для разных веществ экспериментально установлено отклонение от уравнения (38.41). Таким образом, формулировка Планка теплового закона Нернста не выполняется как точное утверждение. Речь идет об отклонениях в основном замороженных молекулярных кристаллов, которые были упомянуты в пункте а. в связи с предположением 1. Фактически при формулировке (38.41) предположение 1 вообще не учитывается. Поэтому предложено два способа для превращения (38.41) в точный закон. Первый состоит в том, что для рассматриваемого вещества дополнительно требуют внутреннее равновесие при Т- 0, в то время как во втором способе в правой части уравнения (38.41) нуль заменяется на положительную конечную величину Я 1п W. Против первой формулировки свидетельствует то, что понятие внутреннего равновесия имеет смысл только по отношению к определяемым процессам . При второй формулировке из сравнения калориметрической и спектроскопической энтропии известно, что либо W=, либо по порядку величины W=2. Это сравнение выполнимо только для относительно малого числа веществ. В других случаях приходится ограничиваться только предположениями. Практически всегда исходят из уравнения (38.41) и учитывают, что нормальная энтропия, рассчитанная таким образом, имеет неточность порядка Я 1п 2. Этот способ тем более обоснован, так как неточность, обусловленная экстраполяцией при Г->0(разд. а., предположение 3), того жепорядка. Для большинства применений величина этого порядка не играет [c.196]


Смотреть страницы где упоминается термин Энтропия понятие: [c.436]    [c.74]    [c.117]    [c.78]    [c.341]    [c.66]    [c.102]    [c.106]    [c.14]   
Физическая химия для биологов (1976) -- [ c.86 , c.92 ]




ПОИСК







© 2025 chem21.info Реклама на сайте