Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитрид бора соединения внедрения

    Например, кристаллические решетки металлов, несмотря на плотную упаковку атомов, имеют тетраэдрические и октаэдрические пустоты. Если такой материал контактирует с веществом, содержащим атомы небольшого размера кислород, бор, азот, углерод, водород, то последние могут внедряться в эти пустоты. Образуются специфические химические соединения внедрения — гидриды, нитриды, карбиды, бориды или некоторые низшие оксиды. Заполнение пустот, как правило, бывает неполное, и поэтому соединения внедрения имеют переменный состав. [c.40]


    Аналогами графита в отношении зонной структуры являются соединения, полученные в результате внедрения в графитовые сетки других атомов, и соединения с полностью заме-щ,енной структурой графита, как, например, нитрид бора. [c.135]

    Кроме стехиометрических интерметаллических соединений и сплавов замещения существует другой очень большой класс сплавов, в которых один тип атомов располагается в промежутках, или пустотах, между атомами металла- хозяина . Многие гидриды, бориды, нитриды и карбиды металлов являются соединениями внедрения, что можно было бы ожидать, учитывая небольшие размеры атомных ядер элементов Н, В, Н, С по сравнению с атомными ядрами элементов-металлов (см. т. 1, табл. 14.3). Типичное соотношение радиусов в данном случае — примерно 0,5. Это дает возможность предположить, что атомы бора, азота и углерода будут располагаться преимущественно в октаэдрических пустотах Гщ ст/ мет — О, 414) металлов. Меньший по размеру атом водорода мог бы располагаться в тетраэдриче- [c.108]

    Представим себе, что на металл действуют каким-то веществом, содержащим атомы небольшого размера, например атомы бора, углерода, азота и, конечно, водорода. Оказывается, такие небольшие атомы могут внедряться в пустоты, имеющиеся в плотной упаковке атомов металла. Именно так образуются типичные соединения внедрения. Образование соединений внедрения на основе металлической решетки очень характерно для металлов дополнительных подгрупп. Соединения элементов дополнительных подгрупп с водородом (гидриды), а также нитриды, карбиды, бориды и некоторые низшие окислы чаще всего представляют собой типичные соединения внедрения. [c.44]

    Карбиды, нитриды и бориды внедрения. Углерод образует с более электроположительными металлами ионные карбиды (стр. 501). Карбиды переходных металлов побочных подгрупп IV, V и VI (за исключением хрома) групп периодической таблицы по своим свойствам сильно отличаются от ионных карбидов. Подобными свойствами обладают также соединения этих металлов с азотом и бором. [c.594]

    Бориды. Бор взаимодействует при высоких температурах (1300— 2000° С) в атмосфере аргона с большинством металлов (кроме щелочных, которые при этих температурах возгоняются), образуя бориды состава Ме В . В них сложным образом переплетаются металлическая и ковалентная связи. Один и тот же металл может образовать с бором ряд соединений. При относительном недостатке атомов бора они изолированы друг от друга, при избытке — образуют цепочки, сетки и каркасы. Бориды могут иметь строго определенный состав и быть фазами внедрения, подобно карбидам, нитридам и т. д. [c.174]


    Нитриды, бориды, карбиды, фосфиды, сульфиды и другие бинарные соединения Ве—Ва [2, 3] для ЩЗЭ имеют преимущественно ионную природу, а в случае Mg и особенно Ве, как правило, структура осложняется, и строение соединения часто определяется либо структурой исходного металла (с внедрением в ее пустоты атомов неметалла), либо структурой простого вещества — неметалла (например, бора), в пустоты которой внедрены атомы Ве или Mg, [c.45]

    Кристаллические структуры соединений переходных металлов с азотом и углеродом можно просто описать как плотнейшие (или близкие к ним) упаковки металлических атомов, в междоузлия которых внедрены небольшие атомы неметаллов. В большинстве структур отсутствуют заметные локализованные взаимодействия углерод—углерод или азот—азот, характерные для органических соединений. Следует отметить, что в структурах боридов существуют четко выраженные локализованные связи между атомами бора в виде цепочек, слоев или трехмерных каркасов, что обусловливает определенную геометрию структуры [1]. Важными характеристиками карбидов и нитридов являются взаимодействие металл-неметалл и геометрия междоузлия. Атомы углерода и азота обычно располагаются в октаэдрических междоузлиях или в центре тригональных призм. На рис. 7 представлены типы междоузлий в ГЦК-, ОЦК-, гпу- или простой гексагональной структурах. Внедренный атом и ближайшие атомы металла образуют структурную единицу (координационный полиэдр). Если вся структура соединения построена нз таких единиц, ее можно рассматривать или как структуру металла с занятыми междоузлиями, или как структуру, построенную главным образом из координационных полиэдров. [c.35]

    Увеличение расстояний между слоями, обусловленное внедрением хлоридов, описано Крофтом [199—201]. В том случае, когда для эксперимента используются добавки переменной валентности, в слои нитрида бора внедряются хлориды более низкой валентности, чем в графит. В качестве примера следует упомянуть 5Ь "и ul. в нитрид бора внедряется также N2H4. Кристаллы СгС1з и AIB2 тоже образуют соединения внедрения с пятихлористым молибденом и аммиаком соответственно. [c.155]

    Естественно ожидать, что нитрид бора будет образовывать соединения внедрения, похожие на соединения графита. И действительно, он может поглощать такие вещества, как хлориды сурьмы, мышьяка, меди, железа, алюминия, а также гидразин М2Н4. [c.74]

    Кристаллический кремний реагирует с серой с выделением света при температуре около 600°, образуя сульфид кремния 5152. С азотом он взаимодействует при 1000° с образованием нитрида 51зЫ4. С углеродом и бором кремний при 2000° образует соответствующие силициды 81С и 51Вз. При температуре краснобелого каления кремний соединяется с многими металлами, например Ы, Ве, Mg, Са, 5г, Ва, Сг, Мо, У, Мп, Ее, Со, N1, Р1, Си (силициды Ма, К, КЬ, Сз, А1, 5п, РЬ, Ag, Аи, 2п, С(1, Hg неизвестны). Многие силициды металлов представляют собой соединения внедрения с формулами, не соответствующими обычной валентности элементов. [c.504]

    Бориды переходных металлов являются фазами промежуточного характера между интерметаллическими соединениями и фазами внедрения (типичный пример фаз внедрения — карбиды). Бориды, как и многие силициды переходных металлов, имеют разнообразную п сложную структуру, что связано со способностью атомов бора (соответственно кремния) образовывать между собой валентные связи. Силициды тугоплавких металлов в отличие от карбидов, нитридов и многих боридов ие являются фaзa uI внедрения (из-за большей величины атомов кремния). [c.325]

    Все перечисленные свойства и термодинамические характеристики (АН, АО и 5) зависят от состава фаз, поэтому при их описании надо точно указывать результаты химического и фазового анализа. Бориды переходных металлов являются фазами промежуточного характера между интерметаллическимн соединениями и фазами, внедрения (типичный пример фаз внедрения — карбиды).. Бориды, как и многие силициды переходных металлов,, имеют разнообразную и сложную структуру, что связано со способностью атомов бора (соответственно кремния) образовывать между собой валентные связи. Сплициды тугоплавких металлов в отличие от карбидов, нитридов-н многих боридов не являются фазами внедрения (из-за большей величины атомов кремния). [c.403]

    Следующие соединения азота описаны в других главах галогеннитрпды металлов (гл. 10) некоторые ионы, содержащие N. 3, О (гл. 16) фосфор-азотные соединения (гл. 19) циан, цианаты, тиоцианаты (гл. 21) цианиды металлов (гл. 22) бор-азотные соединения (гл. 24) нитриды внедрения (гл. 29). [c.544]

    Замечании в этом разделе относятся главным образом к соединениям, образующим структуры внедрения и не содержащим железа. Структуры внедрения железа, имеющие чрезвычайно важное техническое значение, описаны очень кратко в заключительном разделе. Температура плавления и твердость некоторых соединений, имеющих структуры внедрения, также приведены ниже. Эти соединения могут быть получены нагреванием тонко измельченного металла с углеродом или бором, или в токе аммиака до температуры около 2200°С для карбидов, 1800—2000° для боридов и 1100—1200° для нитридов. Другим способом получения является нагревание металла (в виде проволоки) в атмосфере какого-либо углеводорода или азота. Твердый раствор состава 4ТаС- -2гС плевится при чрезвычайно высокой температуре, равной 4215° К- Эти соединения химически очень инертны, за исключением случая воздействия окислителей они обладают высокой электропроводностью, понижающейся с повышением температуры так же, как и у металлов некоторые из этих соединений обладают сверхпроводимостью. В приведенной ниже таблице дана твердость по шкале Мооса. По этой шкале алмаз имеет твердость 10. [c.653]



Смотреть страницы где упоминается термин Нитрид бора соединения внедрения: [c.499]    [c.40]    [c.499]    [c.40]    [c.155]    [c.154]    [c.436]    [c.507]    [c.507]    [c.567]   
Графит и его кристаллические соединения (1965) -- [ c.86 , c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Бора нитрид

Нитриды

Соединения внедрения



© 2025 chem21.info Реклама на сайте