Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь химическая магнитный критерий

    Уже в 1931 г. Фогт [170], анализируя изменения магнитной восприимчивости в системе Рс1—Н в зависимости от состава (см. рис. 5.10) пришел к выводу, что атомы водорода отдают атомам палладия свои валентные электроны. Возникающие таким образом протоны проникают в электронную оболочку атомов палладия (подобно тому, как это имеет место в случае галоидоводородов), образуя ионы РёН" , которые могут относительно легко отщеплять протоны. Этот факт, по мнению Фогта, объясняет наблюдаемую ранее [35] миграцию водорода в направлении катода во время электролиза насыщенных водородом палладиевых стержней. Мотт и Джонс [109] в 1936 г. на основании зонной теории объяснили исчезновение парамагнитных свойств палладия [160] для состава Рс1Но,55 частичным (55%) заполнением дырок в 4й-оболочке палладия электронами от атомов водорода. Такая металлизация водорода в кристаллической решетке металла получила объяснение в работе Уббелоде [168], подкрепляющей теоретические исследования Вигнера и Хантингтона 183]. Они показали, что при расширении кристаллической решетки металла, за счет растворения им водорода, должно действовать своеобразное внутреннее давление, достаточно большое для того, чтобы быть причиной металлизации водорода. Для объяснения физических свойств гидридов переходных металлов многие исследователи и до сих пор используют эту модель образования гидридов за счет растворения водорода в металле. Одним из главных аргументов в пользу этой модели является расширение (дилатация) кристаллической решетки переходного металла по мере растворения в нем водорода. Давно известно, что плотность гидридов щелочных и щелочноземельных металлов, в которых водород находится в виде аниона Н , больше плотности исходных металлов [6, 138] и, следовательно, расстояния между атомами металла в этих гидридах меньше. Этот критерий выяснения типа химической связи в гидриде по его плотности, подробно был рассмотрен только в 1948 г., когда Диалер [39] показал, что образование ионного гидрида может сопровождаться как уменьшением, так и увеличением постоянной решетки. Например, в случае гидрида церия, потребность в пространстве у иона Н больше, чем увеличение объема за счет ионизации атомов церия, и, следовательно, образование гидрида церия СеНг солеобразного типа должно сопровождаться увеличением решетки. То же самое наблюдается и для гидридов других переходных металлов. [c.165]


    Изучению магнитных свойств комплексов большую важность придавал Полинг. Для комплексов с центральным ионом, обладающим 4,5, 6, 7 или 8 -электронами, он предложил магнитный критерий типа связи. Согласно этому критерию спин-свободные комплексы можно рассматривать как ионные, а спин-спаренные — как ковалентные. Такой подход позволяет провести систематизацию данных по комплексам, связав воедино магнитные и спектральные свойства с химическими свойствами и результатами рентгеноструктурного анализа. [c.213]

    Приведенное определение является достаточно строгим и надежно отличает химическую связь от, например, межмолекуляр-ной . Оно содержит требуемый от всякого научного определения экспериментальный критерий его идентификации перестройка электронных оболочек сказывается на всех основных физических и химических свойствах многоатомной системы и поэтому совокупность всех этих свойств составляет экспериментальный критерий проявления химической связи. При этом такая важная характеристика связи, как энергия, может оказаться менее чувствительной к электронному строению связи, чем, например, оптические спектры. Поэтому энергия связи сама по себе, как указывалось, не всегда может однозначно и достаточно полно характеризовать происхождение связи в ряде случаев наличие химической связи лучше всего обнаруживается по электронным спектрам. Кроме энергии связи и оптических спектров от химической связи сильно зависят колебательные спектры, спектры магнитного резонанса (электронного и ядерного), спектры ядерного квадрупольного резонанса и ядерного гамма-резонанса, магнитные и электрические свойства и др. [c.6]

    Аналогичное резкое различие магнитных моментов предсказано для плоской и тетраэдрической конфигураций -систем в комплексах N1 1, Р(11 и В случае образования 5/7 -гибридных связей должны быть два неспаренных электрона, а для плоских йзр -тб-ридных связей электроны должны быть спарены, что приводит к диамагнетизму. Все тетракоординированные комплексы Р(1и и Р1 диамагнитны и, следовательно, предполагают, что они плоские и связи в них — ковалентные. В действительности это подтверждается большим числом химических и рентгеноструктурных данных. С другой стороны, давно известно, что для существует два больших класса комплексов. Одним из важных достоинств магнитного критерия явилось изящное объяснение существования этих классов комплексов. Синие и зеленые комплексы парамагнитны, следовательно, должны быть либо тетраэдрическими со связями 8р , либо октаэдрическими с ионными связями, а желтые и красные — диамагнитны, т. е. в них должны существовать образующие плоский квадрат. Электронные конфигурации для этих структур представлены ниже [c.268]


    Однако магнетохпмия соединений кобальта (II) осложняется спин-орбитальными взаимодействиями. Измеренные величины магнитных моментов почти всегда больше, чем вышеприведенные, и в течение некоторого времени предполагалось, что для двух типов комплексов характерны интервалы 1,8—2,1 .1в и 4,3—4,6 -1в. Позже для октаэдрических комплексов было найдено много промежуточных значений (например, 2,63 цв для Со(1егру)2Вг2-НгО), п сейчас они перекрывают практически весь интервал значении ц между 2 и 4цв- Очевидно, что магнитный момент чрезвычайно чувствителен к пространственному окружению атома Со(П) и не может быть рассмотрен в качестве надежного критерия его стереохимии. С открытием высоко-спиновых плоскоквадратных комплексов с магнитным моментом, близким к 4 Ив, это свойство не может быть использовано даже для распознавания плоскостного и тетраэдрического расположения связей. Поскольку на основе химической формулы не всегда возможно правильно судить и о самом координационном числе металла, мы ограничимся примерами лишь тех соединений, для которых были выполнены дифракционные исследования. [c.361]

    Достаточно убедительные сведения о строении первой координационной сферы металла в тио- и селеноцианатах можно получить также из совокупности косвенных физико-химических данных из спектральных и магнитных характеристик из особенностей химического поведения, из величины электропроводности и др. Такие характеристики в особенности полезны в тех случаях, когда сопоставляются аналогичные или близкие по составу соединения, для одного или нескольких из которых уже имеются структурные данные. Главную роль здесь играют электронные спектры, характер которых различен в зависимости от симметрии поля лигандов. Иногда удается убедительно интерпретировать спектр, даже не имея эталонной модели (структурно-изученного соединения). Дополнительным критерием правильности расшифровки спектра в таких случаях служит сравнение величины расщепления А для соединений с предположительно тетраэдрической и октаэдрической конфигурацией комплексов (близость Атетр/Аокт к значению 0,44). ИК-спектры в той их части, которая относится к основным колебаниям групп ХСМ (Х = 5, 5е), малочувствительны к координационному числу металла. Однако при сопоставлении близких по составу соединений различие в координационном числе металла удается все же проследить оно сказывается на частотах валентных колебаний связей X—С и С—N достаточно закономерно. Такой способ определения строения координационного полиэдра использовали, например, Нельсон и Шеперд при анализе соединений типа МА2(ЫС8)2, где А —амин, М = Со, N1, 2п [6], и Форстер и Гудгейм при анализе соединений типа М2 [М(МС5)4], где М=Мп, Ре, Со, N1 [7].  [c.170]


Смотреть страницы где упоминается термин Связь химическая магнитный критерий: [c.84]    [c.314]   
Теоретическая неорганическая химия (1969) -- [ c.277 ]

Теоретическая неорганическая химия (1971) -- [ c.267 ]

Теоретическая неорганическая химия (1969) -- [ c.277 ]

Теоретическая неорганическая химия (1971) -- [ c.267 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте