Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитные свойства комплексов

    Как X, так и М — макроскопические величины. При описании магнитных свойств комплексов переходных металлов обычно используют микроскопический параметр, называемый эффективным магнитным моментом Измеряется он в магнетонах Бора и определяется следующим образом  [c.137]

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]


    У Низко- и высокоспиновые комплексы. Теория кристаллического поля достаточно просто и наглядно объясняет магнитные свойства комплексов, их спектры и ряд других свойств. Для понимания этих свойств необходимо знать характер распределения электронов по -орбиталям иона, находящегося в поле лигандов. Последнее зависит от соотношения величины энергии расщепления А и энергии отталкивания электронов друг от друга. [c.507]

    История развития этих теорий служит иллюстрацией утверждения, что неверную теорию всегда можно усовершенствовать, но никогда нельзя доказать, что она окончательно правильна. Успешное объяснение теорией валентных связей координационной геометрии и магнитных свойств комплексов не дает гарантии правильности этой теории или хотя бы правильности ее подхода. Каков, например, правильный ответ на вопрос-обусловлено ли расщепление уровней 2д и образованием молекулярных орбиталей (точка зрения теории поля лигандов), электростатическим отталкиванием (теория кристаллического поля) или выбором шести орбиталей для гибридизации (теория валентных связей) А может быть, неверны все три точки зрения, и когда-нибудь мы будем относиться к теории поля лигандов с тем же снисхождением, с каким сейчас относимся к теории валентных связей  [c.246]

    Магнитные свойства комплексов. Данные свойства можно предсказать, если принять, что наблюдаемый парамагнетизм имеет только спиновое происхождение. Рассмотрим ионы [Ре(СН),] и [Ре(Н20),1 . Из спектрохимического ряда следует, что лиганд СМ создает сильное, а лиганд Н2О — слабое поле. В сильном поле -электроны иона Ре все спарены (3 =0), а в слабом поле — не все (5 = 2) (рис. 56). Поэтому первый ион должен быть диамагнитным, а второй парамагнитным. Парамагнитный момент [Ре(Н20)в] " должен быть равен М = 2у 75 ТТ) = 4,90р,в (см. 12), что хорошо подтверждается опытом (5,26 [д,в). Небольшое расхождение связано с орбитальным магнетизмом. ..  [c.124]

    Выводы из теории валентных связей часто удается сопоставить с результатами изучения магнитных свойств комплексов. Комплексообразование с аддендами с сильно выраженными донорными свойствами может привести к спариванию электронов, что изменяет магнитные свойства комплексов. Например  [c.253]

    Величина энергии расщепления А имеет большое значение при обсуждении спектральных и магнитных свойств комплексов. Обычно значения А определяют спектроскопическими методами. Значения А для некоторых октаэдрических комплексов приведены ниже. [c.212]

    Изучению магнитных свойств комплексов большую важность придавал Полинг. Для комплексов с центральным ионом, обладающим 4,5, 6, 7 или 8 -электронами, он предложил магнитный критерий типа связи. Согласно этому критерию спин-свободные комплексы можно рассматривать как ионные, а спин-спаренные — как ковалентные. Такой подход позволяет провести систематизацию данных по комплексам, связав воедино магнитные и спектральные свойства с химическими свойствами и результатами рентгеноструктурного анализа. [c.213]


    Теория кристаллического поля смогла объяснить также магнитные свойства комплексов, которые вызваны наличием в них неспаренных электронов. Комплексы, обладающие неспаренными электронами и, следовательно, магнитным моментом, называются высокоспиновыми, а не обладающие магнитными свойствами — низкоспиновыми. Согласно теории, в пределах одной группы орбиталей или электроны располагаются в полном соответствии с правилом Хунда, сообщая комплексу максимальный спин. Поэтому ионы с электронной конфигурацией (8с , Т1 , Сг ) в октаэдрическом поле — высокоспиновые. Четвертый электрон (например, в ионах или Мп ), попадая в ион, может заполнить одну из ячеек нижнего уровня в октаэдрическом поле) или занять вакантную ячейку (й ) более высокого уровня. Обе возможности связаны с затратами энергии. Энергия спаривания электронов Г7 обычно определяется квантово-химическими расчетами. Если и > > Л, электрон предпочитает занять более высокую орбиталь и тем самым увеличить спин комплекса, если V < < А, электрон идет на уже занятую электроном орбиталь и снижает общий спин. Например, для комлексного иона Ге с конфигурацией = 210 кДж/моль, А (НгО) = = 124 кДж/моль, А (СМ ) = 397 кДж/моль. Поэтому комплекс [Ре (Н20)в] — высокоспиновый, а [Ре (СМ)в] — низкоспиновый. В ионе [Ре (СМ)в] все электроны находятся на связывающих орбиталях в отличие от иона [Ре (Н20)в] , поэтому прочность связи и химическая устойчивость цианидного иона должна быть много выше, чем аквоиона, что и наблюдается на практике. [c.269]

    Магнитные свойства комплексов [c.13]

    Магнитные свойства комплексов 173 [c.273]

    Магнитные свойства комплексов 277 Магнитный критерий типа связи [c.277]

    Магнитные свойства комплексов 279 [c.279]

    ТКП предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си +, Сг + и др.). Эта теория объясняет цвет соединений, связывая спектры комплексов с — -переходами электронов, а также магнитные свойства комплексов - и /-катионов. Для 5 р -катионов ТКП не дает каких-либо интересных результатов. Она мало пригодна также для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии л-взаимодейст-вия. [c.60]

    Предскажите магнитные свойства комплексов с центральными атомами в тетраэдрическом поле лигандов (см. задачу 11.41). [c.201]

    Рассмотрите строение следующих комплексов с позиций теории кристаллического поля, определите тип гибридизации орбиталей центрального атома и укажите магнитные свойства комплексов  [c.276]

    ТКП и магнитные свойства комплексов [c.424]

    Магнитные свойства комплексов меди (II) показывают, что в одноядерных комплексах практически нет взаимодействия между электронами, принадлежащими разным ионам меди, но в тех соединениях, в которых ионы меди связаны теми или иными анионами, такое взаимодействие есть и оно уменьшает магнитные моменты, по-видимому, возможно даже образование электронных пар из электронов, относящихся к двум ионам Си2+. [c.204]

    ЭФФЕКТ ЯНА — ТЕЛЛЕРА. СПЕКТРАЛЬНЫЕ И МАГНИТНЫЕ СВОЙСТВА КОМПЛЕКСОВ [c.62]

    Величина спина определяет магнитные свойства комплекса, поэтому при сопоставлении комплексов наряду с электровалентностью указывают также магнитное состояние иона металла. [c.7]

    N0", МНз). При этом менее выгодные -орбитали заполняются электронами лишь после полного заполнения более выгодных. Теория кристаллического поля предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си " , Сг + и др.). Эта теория объясняет цвет соединений и магнитные свойства комплексов переходных металлов. Для ионов с внешней электронной конфигурацией 5 р теория не дает каких-либо интересных результатов. Для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии я-взаимодействия, эта теория также мало пригодна. Теория кристаллического поля наиболее эффективна для описания высокоспиновых комплексных соединений переходных металлов и /-элементов. [c.20]

    Метод валентных связей позволяет предвидеть магнитные свойства комплексов. Так, он указывает на парамагнетизм комплексов [N 014 12 и [N (N1 3)6] и диамагнетизм комплекса [N ( N)4p , что подтверждается экспериментом. Этот метод позволяет предсказать, что реакции аамещения лигандов проходят быстро у внешнеорбитальных комплексов. Расчет электронного строения комплексов, а также анализ и предсказание их спектров при помощи метода валентных связей затруднены. [c.35]

    Эта теория просуществовала достаточно долго, пока новые методы исследования свойств и строения комплексов не потребовали учета ковалентных взаимодействий в них. Эта теория не смогла объяснить магнитных свойств комплексов, разнообразия их строения при одном и том же КЧ (например, при КЧ = 4 возможны объемный тетраэдр и плоский квадрат), спектральных свойств, прочности комплексов в зависимости от природы лигандов и т. д. [c.267]


    Метод ВС дал возможность объяснить, а иногда и предсказать магнитные свойства комплексов. Покажем это на примере комплексов двухвалентного никеля. Его электронная структура может быть представлена в виде  [c.271]

    Энергия расщепления кристаллическим полем, Д , оценивается путем измерения энергии, поглощаемой при возбуждении одного электрона с уровня на уровень (рис. 20-12). Величина этой энергии очень важна при объяснении магнитных свойств комплексов. Если энергия А невелика, как в комплексе СоР , щесть -электронов иона Со расселяются по всем пяти -орбиталям (рис. 20-13), потому что при минимальном спаривании электронов достигается выигрыщ в энергии. И наоборот, если энергия расщепления, Д , достаточно велика по сравнению с энергией спаривания двух электронов на одной орбитали, больщая устойчивость достигается, если на каждой из трех орбиталей нижнего энергетического уровня 3, располагается по два спаренных электрона, а две орбитали верхнего уровня остаются вакантными. Такая ситуация реализуется в комплексе Со(ЫНз)й . Из-за различного числа неспаренных электронов в двух рассмотренных структурах ион Со (N113) + называется низкоспиновым комплексом, а ион СоР -высокоспиновым комплексом. [c.231]

    Чем обусловлены магнитные свойства комплексов Как можно предсказать магнитные свойства комплексов с помощью теор41и кристаллического поля  [c.88]

    Магнитные свойства комплексов позволяют установить, является ли комплекс внешнеорбитальным или внутриорбиталь-ным, что дает возможность судить о типе гибридизации электронных орбиталей комплексообразователя. [c.137]

    Определению магнитных свойств комплексов переходных элементов уделено большое внимание Их изучение дало ценную информацию о стереохимии, типах связи в комплексах и о степени окисления центрального иона металла. Прежде чем выяснять, каким образом эту информацию удалось получить, нужно рассмотреть типы магнитного поведения комплексов. [c.271]

    Таким образом, качественный вариант метода Е1С позволяет сделать некоторые предсказания относительно геометрической конфигурации и магнитных свойств комплексов. Так, он указывает на парамагнетизм комплексов [Ni l4] и [N (N [3)6] + и диамагнетизм комплекса [Ы1(СЫ)4]2", что подтверждается экспериментом. Этот метод позволяет предсказать, что реакции замещения лигандов проходят быстро у внешнеорбитальных комплексов. Некоторые обобш,ения, полученные с помощью метода ВС, имеют довольно широкий характер и успешно подтверждаются. К их числу относится, например, предсказание квадратной структуры комплексов -катионов с лигандами сильного поля. Проверенное на [c.66]

    В комплексах [Со(К02)б] и [№(ЫС8)б] лигапды обладают сильным полем. Составьте энергетическую схему образования связей в этих комп.чексах и укажите магнитные свойства комплексов. [c.199]

    По методу валентных связей определите тип гибридизации орбиталей центрального атома в комплексах [2п(ЫНз)2С12] и [ d(H20)2(0H)4]2-. Установите геометрическую форму и магнитные свойства комплексов. Будут ли эти комплексы окрашены Дайте обоснованные ответы. [c.127]

    Для катионов с недостроенной 18-электронной оболочкой в меньшей степени применимы простые электростатические представления, основанные на законе Кулона. Такие электронные оболочки при действии электроотрицательных лигандов деформируются значительно больше, чем 8-электронные оболочки катионов, и доля ковалентности химической связи металл — лиганд сильно возрастает. Изменение устойчивости комплексов элементов четвертого периода можно объяснить с позиций усовершенствованной электростатической теории, которая принимает во внимание не только чисто кулоновское взаимодействие между частицами, но и форму орбиталей -электронов. Речь идет о теории кристаллического поля, созданной в 30-х годах этого столетия физиками Г. Бете и Ван-Флеком и позже примененной химиками для объяснения спектров поглощения и магнитных свойств комплексов переходных металлов. [c.250]

    Электронная структура для изолированного иона Ре должна быть такой, при которой четыре З -орбитали должны быть заняты одиночными электронами с параллельными спинами, а одна занята парой электронов. Ион с такой структурой будет иметь магнитный момент, соответствующий параллельно ориентированным спинам четырех неспаренных электронов. Экспериментально установлено, что гидратированный ион железа П) Ре(Н20)б имеет магнитный момент именно с таким значением, в то время как ион гексацианоферрата(П) магнитным моментом не обладает. Отсюда можно сделать вывод, что связи в этих двух комплексных ионах различны по своему характеру в гидратированном ионе железа (И) эти связи, имеющие значительный ионный характер, образованы с использованием 45-орбитали и трех 4р-ор-биталей, в то время как в ионе гексацианоферрата(П) орбитали образуют ковалентные связи. Изучение магнитных свойств комплекса очень часто позволяет сделать вывод о природе орбиталей связи, использованных атомами данного металла. Такой магнитный критерий позволил установить, что комплексы металлов с сильно электроотрицательными атомами или группами обычно имеют в основном ионный характер (без Зй-орбиталей, используемых для связей), тогда как комплексы металлов с менее электроотрицательными атомами или группами носят ковалентный характер (с использованием З -орбиталей в гибридных связывающих орбиталях). [c.473]

    Долгое время химиков чрезвычайно занимала проблема образования химической связи в координационных комплексах. Во многих отношениях связь в комплексных соединениях ничем не отличается от связи в ковалентных молекулах образование направленных связей в обоих случаях приводит к возникновению линейных, тетраэдрических и октаэдрических структур. И все же координационные комплексы, особенно комплексные ионы переходных металлов, обладают некоторыми свойствами, которые не наблюдаются у большинства обычных молекул. Химикам не давали покоя многие вопросы, касающиеся строения и свойств таких комплексов. Почему, например, некоторые комплексы обладают плоско-квадратной структурой Почему одни комплексы инертны, а другие лабильны Как связана окраска комплексов с природой их лигандов [например, Си (НгО) имеет бледно-голубую окраску, Си(КНз) —темно-пурпурную, а СиС1 — зеленую] Каким образом зависят от природы лигандов магнитные свойства комплексов [скажем, Ре(Н20)б" обнаруживает парамаг- [c.413]


Смотреть страницы где упоминается термин Магнитные свойства комплексов: [c.223]    [c.271]    [c.275]    [c.414]    [c.253]   
Смотреть главы в:

Химия координационных соединений -> Магнитные свойства комплексов


Химия и периодическая таблица (1982) -- [ c.226 ]

Химия координационных соединений (1966) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы свойства



© 2025 chem21.info Реклама на сайте