Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление внутреннее молекулярное

    Термодинамической мерой молекулярного взаимодействия в жидкости может в известных границах служить внутреннее давление жидкости (ди/да) [см. уравнения (IV, 30—33), стр. 127—1281. [c.163]

    По зависимости давления насыщенного пара от температуры и плотности данного вещества А с молекулярной массой М в твердом и жидком состояниях ( ТВ и ж в кг/м ) в tpoйнoй точке (тр.т) 1) постройте график зависимости Ig Р от 1/Т 2) определите по графику координаты тройной точки 3) рассчитайте среднюю теплоту испарения и возгонки 4) постройте график зависимости давления насыщенного пара от температуры 5) определите теплоту плавления вещества при температуре тройной точки 6) вычислите dT/dP для процесса плавления при температуре тройной точки 7) вычислите температуру плавления вещества при давлении Р Па 8) вычислите изменение энтропии, энергий Гиббса и Гельмгольца, энтальпии и внутренней энергии для процесса возгонки 1 моль вещества в тройной точке 9) определите число термодинамических степеней свободы при следующих значениях температуры и давления а) Ттр.т. Ртр.т б) Т .т.к. Р = I атм в) Т в.т. Ртр.т- Необходимые для расчета данные возьмите из таблицы (см. с. 167). [c.166]


    Таким образом, молекулы поверхностного слоя толщиной, равной радиусу молекулярного действия, притягиваются к внутренним слоям жидкости, т. е. поверхностный слой оказывает на всю жидкость давление. Это давление, называемое молекулярным давлением, направлено перпендикулярно к поверхности. Молекулярное давление в жидкостях весьма велико для воды, например, оно достигает приблизительно 10000 ат (980,7 МПа). [c.528]

    Капиллярное давление можно рассматривать как добавку, которая в зависимости от знака кривизны увеличивает или уменьшает внутреннее молекулярное давление Ж по сравнению с молекулярным давлением при наличии плоской поверхности раздела Хо, т. е. Ж г) = = Жо р .  [c.31]

    Наличие межмолекулярных взаимодействий учитывалось лишь с помощью сил внутреннего (молекулярного) давления. Считалось, что жидкость следует рассматривать как сильно сжатый газ, находящийся главным образом под действием внутреннего давления, достигающего нескольких тысяч атмосфер. С этой точки зрения размещение молекул в жидкостях и газах предполагалось одинаково хаотическим. [c.111]

    В трубчатых печах, в которых происходит перегрев углеводородов до высоких температур, на внутренней поверхности труб осаждаются возникающие в результате разложения углеводородов слои кокса. Образование кокса, обусловленное, прежде всего, температурой стенки трубы, а вследствие этого и тепловой нагрузкой поверхности труб, особенно проявляется у углеводородов с большим молекулярным весом. Слой кокса, лишь незначительно снижающий теплопередачу, существенно повышает температуру поверхности труб и потери давления печи. [c.120]

    Уравнение ВаН-дер-Ваальса значительно точнее отображает состояние реального газа, чем уравнение Клапейрона — Менделеева, выведенное для идеальных газов. Так, при р=1000 атм отступление для азота от формулы Ван-дер-Ваальса не превышает 2%, а отступление от формулы для идеального газа — более чем на 100%- Кроме того, уравнение Ван-дер-Ваальса частично описывает также свойства данного вещества и в жидком состоянии (например, в вопросах внутреннего молекулярного давления). [c.67]

    Долгое время считали, что газообразный этилен нельзя использовать для получения высокополимерных материалов, однако позднее было установлено, что при высоких температурах и давлениях этилен способен полимеризоваться. В развитие этого процесса удалось получить новые типы катализаторов, в присутствии которых полимеризация этилена стала возможной даже при комнатной температуре и атмосферном давлении. Этот пластик, называемый полиэтиленом, или политеном, по внешнему виду и на ощупь несколько похож на парафин, но, конечно, гораздо прочнее и плавится при более высокой температуре, а именно при ПО—120° (в зависимости от метода, которым он был получен). Полиэтилен можно перерабатывать формованием и методом экструзии, а также подобно другим пластикам можно использовать для получения волокна. Он обнаруживает явление холодного течения в еще большей степени, чем найлон. Это свидетельствует о том, что полиэтилен может кристаллизоваться и что кристаллы могут ориентироваться при течении. Некоторые фотографии, полученные в электронном микроскопе, показаны на рис. 44. На второй фотографии (рис. 44, б) видны контуры зародышевого кристалла, образующегося на поверхности это, возможно, одно из наиболее прямых проявлений внутренней молекулярной упорядоченности структуры данного пластика. Однако наиболее ценны диэлектрические свойства полиэтилена. Будучи углеводородом, он, разумеется, является хорошим изоляционным материалом, но, кроме того, он особенно эффективен как изолятор для проводов, по которым передается переменный ток высокой частоты. [c.142]


    На первой ступени удаляются путем адсорбции содержащиеся в дымовых газах оксиды азота и аммиак. Затем в результате перепада концентрации эти вещества диффундируют во внутреннюю часть катализатора. В капиллярах потенциал для реакции оксидов азота с аммиаком уменьшается настолько, что этот экзотермический процесс может происходить уже при температурах дымовых газов от 300 до 480 С. После этого продукты реакции (вода и азот) удаляются под давлением из молекулярного сита и отводятся с потоком дымовых газов. [c.145]

    Для веществ с низким поверхностным натяжением (вода, органические вещества и т. п.) интенсивность молекулярных взаимодействий можно охарактеризовать их полярностью. Макроскопической мерой полярности жидкостей могут служить дипольный момент, поверхностное натяжение, внутреннее (молекулярное) давление, диэлектрическая проницаемость, теплота испарения. [c.84]

    Кристаллы твёрдых тел распались бы, если бы не было сил взаимодействия между элементами их пространственной решётки. Свойства жидкостей—их вязкость, поверхностное натяжение, молекулярное давление—являются следствием объёмного и поверхностного молекулярных силовых полей. Наряду с объёмным (внутренним) молекулярным полем мы в явлениях природы наблюдаем и поверхностное молекулярное поле, возникающее на границах раздела различных фаз, например на гранях кристалла. [c.5]

    Упрощая вопрос и заменяя совокупность сил межмолекулярного взаимодействия (молекулярное силовое поле) ее макроскопическим аналогом—внутренним давлением, можно положить, что при отсутствии химического взаимодействия свойства раствора определяются в основном различием во внутренних давлениях компонентов. Можно допустить, что при равенстве внутренних давлений двух смешивающихся жидкостей молекулярные силовые поля не изменяются существенно при смешении и молекулы обоих компонентов испытывают такое же воздействие окружающих молекул, что и в среде себе подобных. В этом случае можно ожидать простых законов для многих свойств растворов, в частности отсутствия теплоты смешения и наличия пропорциональности между давлением насыщенного пара компонента и его мольной долей в растворе. Последнее связано с тем, что возможность для отдельной молекулы растворителя перейти из жидкой фазы в пар остается в растворе (в рассматриваемом простейшем случае) той же, что и в чистой жидкости число же молекул, испаряющихся в единицу времени, уменьшается пропорционально мольной доле. [c.168]

    Изложенные выше свойства идеальных растворов совпадают с теми, которые можно предвидеть (см. стр. 168) для смесей компонентов с равными внутренними давлениями, молекулярные силовые поля которых (компонентов) равны и не изменяются при смешении. Таким образом, идеальные растворы обнаруживают наиболее простые соотношения как для экспериментально изучаемых свойств, так и с точки зрения молекулярных взаимодействий. [c.191]

    В уравнениях математического описания реакционных процессов в реакторах с мешалками использованы следующие условные обозначения информационных переменных а, Ь, с — стехиометрические коэффициенты А, В. С — реагирующие вещества С — концентрация компонента Ср —удельная теплоемкость потока реакционной массы Е — энергия активации fi — площадь теплообмена между реакционной массой и стенкой реактора — площадь теплообмена между стенкой реактора и хладагентом в рубашке Рз — площадь теплообмена между реакционной массой и стенкой змеевика 4 —площадь теплообмена между стенкой змеевика и теплоносителем в змеевике G — массовый поток вещества ДС — изменение массового потока реагента за счет диффузии и конвекции А — удельная энтальпия ДЯг — тепловой эффект реакции при постоянном давлении при превращении или образовании 1 кмоль компонента — длина змеевика т —число компонентов реакции Ai — молекулярная масса реагента п —порядок реакции /V —число молей Qnp —скорость подвода энергии (тепла) Qot — скорость потока энергии (тепла) в окружающую среду R — газовая постоянная Т — абсолютная температура — температура / — общая внутренняя энергия системы, [c.67]

    Если реагенты или один из реагентов находится в жидкой фазе, то условия транспорта реагентов к внешней и внутренней поверхностям катализатора резко изменяются относительно газофазных реагентов. Для газов коэффициент диффузии имеет порядок 10 м , для молекулярной диффузии в жидкости коэффицент диффузии 10 5 см с — на четыре порядка меньше. Концентрация в жидкости на два порядка выше, чем в газе при атмосферном давлении, но скорость диффузии остается значительно меньшей. Для реакции первого порядка, протекающей во внутридиффузионной области, отношение скоростей при газофазной и жидкофазной реакциях имеет порядок  [c.155]

    Для нормальных ньютоновских жидкостей, представляющих индивидуальные вещества либо молекулярно-дисперсные смеси или растворы, внутреннее трение (вязкость) при данных температуре и давлении является постоянным физическим свойством. Вязкость не зависит от условий определения и скорости перемещения частиц (течения), если не создается условий для турбулентного движения. [c.248]


    Поскольку полимеризация продолжается и после заполнения формы, то за счет выделяемого при реакции тепла увеличивается удельный объем полимерной системы. С другой стороны, процесс полимеризации сопровождается уменьшением удельного объема примерно на 10 %. Поэтому следовало бы подпитывать форму, но так как вязкость реакционной системы с увеличением молекулярной массы или степени сшивания возрастает, то для этого потребовалось бы высокое давление впрыска. Чтобы избежать необходимости подпитки, в один из компонентов вводят небольшое количество порообразователя, который обеспечивает получение литьевых изделий, строго соответствующих размерам внутренней полости формы. Таким способом можно изготавливать очень большие и сложные по форме изделия при относительно небольших давлениях впрыска (1—10 МПа) и малых давлениях смыкания формы. Такие пресс-формы относительно дешевы. [c.542]

    Пример 1. Определить высоту и диаметр газосепаратора-водоотделителя (с внутренней перегородкой), в который после конденсации в конденсаторе-холодильнике и охлаждения до 35 °С поступает 3700 кг/ч газа, 14 500 кг/ч бензина, 1110 кг/ч воды. Давление в аппарате 392 кПа молекулярная масса газа 30 относительная плотность бензина при 35 °С 0,670. На орошение из аппарата откачивают 4630 кг/ч бензина. Схема аппарата приведена на рис. 47, а. [c.118]

    Результаты, полученные Б. Б. Кудрявцевым [16], показывают, что измерение скорости звука в жидкостях может служить методом изучения силового поля молекул. Кудрявцев [15, 16] показал, что, измеряя зависимость между скоростью звука и молекулярным объемом жидкости при постоянной температуре, можно определить внутреннее давление жидкости. Автор отмечает, что приближенно те же вычисления можно произвести, если известны зависимость скорости звука и плотности жидкости от температуры. Акустические измерения в жидкостях, но мнению Б. Б. Кудрявцева, можно использовать для вычисления постоянной а в уравнении Ван-дер-Ваальса и зависимости этой величины от температуры. [c.452]

    На первый взгляд может показаться, что протекание реакций по механизму молекулярной перегруппировки, т. е. в одну стадию, по крайней мере, для мономолекулярных реакций или реакций первого порядка (истинные мономоле-кулярные реакции всегда являются реакциями первого порядка в области достаточно высоких давлений), является более экономным или выгодным. Действительно, процесс перегруппировки связей, который состоит в разрыве одних и возникновении других связей, в пределах одной молекулы может происходить скомпенсированным путем, т. е. облегчаться за счет выгодных внутренних переходов, разрещен-ных квантовой химией. При этом для реакции может потребоваться меньшая энергия, чем энергия разрыва отдельных связей. Если бы эти.внутренне скомпенсированные переход, ды лежали в природе процесса разложения молекул органических соединений, то молекулярный механизм распада являлся бы единственным реальным путем распада этих веществ. [c.14]

    До начала разработки нефтяных залежей на границе раздела фаз установилось равновесное состояние — поверхностно-молекулярные силы уравновешены гравитационными. При разработке залежей равновесие сил нарушается, и движение жидкости в пористой среде за счет созданного перепада давления происходит при непрерывном проявлении внутренних сил, которые стремятся вновь придать многофазной системе равновесное состояние. Эти внутренние силы как бы контролируют весь процесс фильтрации несмешивающихся жидкостей в пласте и определяют текущие и конечные значения всех показателей заводнения пластов. [c.36]

    Центральная роль в теории НДС отводится представлениям о существовании дисперсных частиц, или структурных единиц, различного типа. Особенностью последних, в отличие от дисперсных частиц классических дисперсных систем, является то, что они формируются в нефтяных системах, состоящих из большого числа компонентов, в том числе гомологов, относящихся к различным классам органических соединений с мало различающимися потенциалами межмолеку-лярного взаимодействия. Поэтому существование совокупности молекул с близкими потенциалами меж-молекулярного взаимодействия как единого целого в виде структурных единиц находится в сильной зависимости от внешних условий (температуры, давления, изменения состава дисперсионной среды и т. д.). Внутреннее строение структурных единиц, состоящих из ядра и примыкающего к нему адсорбционно-сольватного слоя, также имеет свои особенности, заключающиеся в условности границ раздела между ядром, адсорбционно-сольватным слоем и дисперсионной средой. Под влиянием внешних условий происходит экстремальное изменение размеров ядра и адсорбционно-сольватного слоя структурных единиц НДС, что проявляется через соответствующее экстремальное изменение макросвойств НДС и, несомненно, влияет на результаты их технологической переработки. Отметим, что в отличие от принятой в настоящее время технологии предлагаемая физико-химическая технология, обеспечивающая интенсификацию как недеструктивных, так и деструктивных технологичес- [c.7]

    По своему физическому смыслу величина Ж при таком подходе — это мера стиснутости молекул в объеме жидкости из-за их взаимного притяжения, т. е. величина, близкая по смыслу к внутреннему (молекулярному) давлению — силе, удерживающей молекулы жидкости (или твердого тела) в объеме, на несколько порядков меньшем того, который молекулы этого вещества занимали бы в состоянии идеального газа при том же внешнем давлении р. В идеальном газе Х=0 в реальном газе Ж соответствует поправке на притяжение в уравнении Ван-дер-Ваальса. В конденсированных же фазах внутреннее давление достигает весьма больших величин. Если учесть, что толщина поверхностного слоя б близка к размеру молекул (8 Ь), а значения а лежат в пределах от единиц до тысяч мДж/м , то величина Ж составляет 10 —10 ° Н/м (т. е. достигает многих тысяч атмосфер) [c.23]

    При таком подходе по своему физическому смыслу величина является мерой стиснутости молекул в объеме жидкости из-за их взаимного притяжения и близка к внутреннему (молекулярному) давлению, удерживающему молекулы жидкости (или твердого тела) в объеме. В идеальном газе = 0, в реальном газе Ж соответствует поправке на притяжение в уравнении Ван-дер-Ваальса. В конденсированных же фазах внутреннее давление достигает весьма больших значений. Если учесть, что толщина поверхностного слоя 6 близка к ра 1меру молекул (6 Ь), а значения ст лежат в пределах от единиц до тысяч мДж/м , то величина Ссоставляет 10 —10 ° Н/м , т. е. достигает многих тысяч атмос- [c.26]

    Поверхностное натяжение на фанице между дву.мя конденсированными фазами характеризует различие сил взаимодействия между молску лами (частицами) в каждой из соприкасающихся фаз Че.м больше различаются по своей природе эти силы, тем больше межфазное поверхностное натяжение. Для веществ с низки.м поверхностным натяжением (вода, органические вещества и др.) интенсивность молеку, 1ярных взаимодействий можно охарактеризовать их по. тярностью. Макроскопической мерой полярности жидкостей могут служить дипольный. ю-мент, поверхностное натяжение, внутреннее (молекулярное) давление, диэлекфическая проницаемость, теплота испарения. Поэтому при контакте веществ с близкой полярностью, повер.хностное натяжение невелико, в результате достигается хорошее смачивание. Например, твердые тела с гетерополярным типом связи (ионные кристаллы) гидрофильны. [c.98]

    Исчерпывающую теорию соотношений, существующих между неупругой деформируемостью и термическим расширением стекла в интервале отжига, разработал Тул . На свойства стекла влияют не только изменения температуры как таковой, но также изменения температ)фы (молекулярного равновесия в стекле. В за-каленнам стекле равновесная температура понижается со значительной скоростью даже тогда, когда фактическая температура лежит в интервале непосредственно ниже интервала отжига, в котором стекло приобретает пластичные свойства. Следовательно, уравнения для необычных явлений расширения и сокращения в интервале отжига применимы только к таким состояниям, при которых стекло ведет себя как чисто вязкое тело, и они несправедливы для изменений в стекле, находящемся в пластично-вязком состоянии (ом. А. И, 42), при котором неупругая деформируемость возрастает с нагрузкой. Различные тепловые эффекты возникают вследствие того, что равновесие между средним внутренним давлением, обусловленным молекулярными притяжениями, и средним термическим давлением, вызываемым термическими колебаниями, нарушается во время перегревания или переохлаждения. Эти нарушения равновесия вызывают аномальные молекулярные упругие напряжения, которые постепенно затухают со скоростями, определяемыми неупругой деформируемостью, управляющей также скоростями релаксации обычных деформаций в отжигаемом стекле. [c.185]

    Малликен [89, 90], которому принадлежит большая заслуга в теоретической интерпретации комплексов с переносом заряда, предсказал, что эти молекулярные комплексы должны быть весьма чувствительными к изменениям давления. Он писал .. . теория указывает, что если вещество в достаточной мере сжато любым путем, то силы переноса заряда должны довольно быстро возрастать. Такое сжатие, возможно, могло бы быть осуществлено внутренними ионными силами в случае частично ионного кристалла, необычно сильными дисперсионными или дипольными силами, или же сильным внешним давлением ([90], стр. 824). О значительной величине эффекта, оказываемого давлением на молекулярные комплексы с переносом заряда, говорил и Уббелоде на происходившем в 1962 г. симпозиуме по физике и химии высоких давлений [91]. По данным работьГМартина и Уббелоде [92], перенос заряда в таких слабых связях, как образующиеся между ароматическими донорами и акцепторами (например, в системах калий—антрацен или антрацен—иод), резко усиливается при уменьшении межмолекулярных "расстояний. Несколько ранее Дрикамер и Стефенс наблюдали рост интенсивности поглощения в спектрах твердого комплекса хлоранил—гексаметилбензол при высоких давлениях [93]. [c.91]

    Первый член уравнения (1-113) отражает изотермический мас-соперенос, второй член — процесс термо- и влагопроводности. При интенсивном нагревании влажного тела внутри него возникает избыточное давление (по сравнению с общим) из-за внутреннего сопротивления тела движению пара, образующегося в результате быстрого испарения жидкости. Появлению градиента общего давления способствует молекулярное натекание (движение Кнудсена) воздуха через микрокапилляры в области высоких температур тела. Это явление наблюдается при сушке токами высокой частоты, при сушке коллоидных тел распылением в условиях высоких температур. В последнем случае происходит раздувание частиц под действием избыточного давления внутри них. [c.58]

    Таким образом, с привлечением обобщенной теории ДЛФО классификация молекулярно связанной воды на адсорбционно (прочно связанную) воду, воду граничных слоев и осмотически связанную воду получает надежное теоретическое обоснование. Первые две категории воды в теории ДЛФО рассматриваются как внутренняя, более прочно связанная с гидрофильной поверхностью, и внешняя часть граничного слоя, обладающего измененной по сравнению с объемной водой структурой. Формирование слоя осмотически связанной воды регулируется ионноэлектростатической составляющей расклинивающего давления. [c.45]

    Молекулярное давление зависит от сшш взаимодействия между молекулами, то есть от природы жидкости. Сшш взаимодействия тем выше, чем паяярнее мапекулн. Тан,дпя водц межмолекулярное взаимодействие (внутреннее давление) равно 1480 МПа, ддя бензола 380 МПа, для эфира всего 27 МПа [c.5]

    Из чертежа реактора в Фликсборо, которым располагает автор, видно, что внутренний диаметр реактора составлял 3,55 м (11 футов 8 дюймов). Поверхность жидкости, следовательно, была равна 9,89 м (приблизительно 10 м ). Начальная скорость мгновенного испарения составляла 0,56 т/с. Если предположить, что весь выброс возник только от выделения пара с поверхности жидкости в реакторе N 6 (т. е. при выбросе не была задействована жидкость резервуара очистки), то скорость выделения равна 56 кг/(м с). Предполагая внутреннее абсолютное давление равным 8 бар, молекулярную массу циклогексана - 84, получим объемную скорость выделения 2,73 м/с. Это соответствует значению 3 м/с как пределу в испарении водяного пара в резервуаре, о чем говорилось выше, в разд. 5.5.2.4. Однако скорость будет намного больше, если предположить, что мгновенное испарение происходило и в резервуаре очистки. Подтверждение этого можно найти в работе [Smith,1982]. Автор этой работы выполнил серию вычислений для одной из стадий аварии в Фликсборо и пришел к выводу, что, за исключением начальной фазы, продолжавшейся около 1 с, когда жидкость выбрасывалась из реакторов, вовлечение жидкости впоследствии составляло около 1%. [c.85]

    Значения криоскоппческпх констант лежат в довольно широ ких пределах 3,9 для уксусной кислоты, 5,1 — для бензола, 6,9 — для нафталина и нитробензола, 40,0 — для камфоры. Изучение свойств асфальтенов позволило установить, что опп характеризуются тем более высокой растворимостью в органических растворителях, чем полнее они диспергируются в мальтенах (высокомолекулярные углеводороды + смолы) нефти, пз которой они были выделены [28, 29]. Была также установлена зависимость растворимости асфальтенов в неполярных или слабополярных ор-] анических растворителях от внутреннего давления последних где — поверхностное натяжение, а V — молекулярный объем растворителя [30]. Так как значения молекулярного объема для многих органических растворителей довольно близки, то величина новерхностного натяжения дает правильное представ ление о внутреннем давлении последних. На рис. 10 показан зависимость растворимости асфальта от новерхностного натяже-ппя и внутреннего давленпя растворителей. Свойства использо- [c.82]

    Эйлере [321 установил зависимость между растворимостью асфальтенов в неполярных или слабо полярных органических жидкостях и внутреннИлМ давлением Ш Ь последних. В качестве меры внутреннего давления таких жидкостей принято предложенное Гильдебрандтом выражение Y V где Y — поверхностное натяжение, а V — молек5 ляр-ный объем растворителя. Так как значения корня кубического из величины молекулярного объема для многих органических растворителей довольно близки, то о внутренне1М давлении их дает правильное представление величина поверхностного натяжения. В табл. 118 приведена характеристика неполярных растворителей. В этой же таблице приведены величины внутреннего давления и растворимость мексиканского асфальта (пенетрация при 25° С равна 40—50), а на рис. 70 показана зависимость растворимости асфальта от поверхностного натяжения и внутреннего давления растворителя. [c.510]

    Рассмотрим вкратце модель пласта, состоящего из породы (дисперсной системы) и флюида. Дисперсионной средой в породе являются неорганические вещества (силикаты, полевой шпг.т, кальцит, доломит, монтмориллонит и др.), а дисиерсной фазой — капилляры (поры). Капилляры, как разновидности ССЕ, имеют различный диаметр и соответственно обладают разной удел )-ной поверхностной энергией, т. е. энергетически неоднородн , . Компенсация внутренней поверхностной энергии приводит к формированию адсорбционно-сольватного слоя и соответственно ССЕ (пора-fфлюид). На втором этане норы насыщаются флюидами, находящимися в молекулярном состоянии, в объеме которых в виде свободно-дисперсных ССЕ могут находиться различные неоднородности. При вскрытии пласта в результаае изменения внешних воздействий (создается механическое воздействие из-за неренада давления между иородами-коллектора-ми и устьем скважины) флюиды, находящиеся в молекулярном состоянии, начинают вытесняться (происходит нефтеотдача). Однако из-за энергетической неоднородности пор и по другим причинам нефтеотдача неодинакова. Для интенсификации процесса нефтеотдачи применяют различные приемы, наиболее [c.191]

    Газообразные алканы способны образовывать с водой, особенно под давлением, молекулярные соединения, для которых температура разложения при давлении 0,1 МПа и критическая температура соответственно равны с метаном — 29 и 21,5°С, с этаном — 15,8 и 14,5 °С, с пропаном О и 8,5°С. Такого типа гидраты часто вымерзают на внутренних стенках газопроводов. Гидраты — соединения включения (клатраты) представляют собой снегоподобные вещества, общей формулы М /гНгО, где значение п изменяется от 5,75 до 17 в зависимости от состава газа и условий образования [16]. [c.193]

    При проведении аналогий между ультрамикрогетерогенными системами и истинными растворами часто обсуждается специфика применения правила фаз Гиббса к этим системам. Возможность применения к золя]и молекулярно-кинетических законов, законов статистики и энтропии позволяет их рассматривать как системы, обладающие свойствами гетерогенно-дисперсных систем и истпн-ных растворов. Частицы истинных гетерогенно-дисперсных систем не участвуют в тепловом движении. С уменьщением размера до величин, отвечающих ультрамикрогетерогеиной области, частицы постепенно теряют свойство фазы — независимость термодинамических свойств от количества фазы. Как уже известно из разд. II. Д, термодинамические свойства частиц в этой области зависят от дисперсности (изменяются внутреннее давление, растворимость, температура плавления и другие параметры). Одновременно частицы начинают участвовать в тепловом движении системы. Чем меньше частицы, тем дальше система от истинного гетерогенно-дисперсного состояния и тем ближе к истинному раство-ру. [c.209]

    Известно, что растворимость ряда соединений (например, парафиновых углеводородов) с увеличением их молекулярного веса снижается, хотя внутреннее давление при этом возрастает. Указанное явление обусловлено энтропийным эффектом размера молекул растворяемого вещества. Особенно это проявляется у веществ, скрытая теплота плавления которых значительно превышает тепловой эффект взаимодействия растворителя с растворенным веществом. Наличие полярных групп в молекуле растворяемого вегпестня способствует усилению их взаимодействия с молекулами растяп -рителя. Если молекула растворяемого вещества содержит несколько полярных групп с различной полярностью, они могут ориентироваться таким образом, что изменение свободной энергии будет максимальным. Сопутствующее этому снижение энтропии может оказаться достаточным, чтобы увеличить растворимость вещества. Вследствие таких затруднений при фракционировании битумов растворителями можно в лучшем случае получить лишь группы компонентов с близкой растворимостью. Разумеется, эти группы можно, в свою очередь, разделить другими способами, но это требует слишком больших затрат времени, что практически невозможно. [c.9]

    Это объясняется там, что концентрация малекул в газе мала. Вследствие того, что силы действия на молекулы поверхностного слоя не скомпенсированы, возникает результирующая сила, направленная внутрь жидкости. Эта равнодействующая сила всех малекул поверхностного олоя жидкости называется внутренним или молекулярным давлением. [c.4]

    Охлаждение расплава начинается уже в начале цикча литья (за исключением случая с обогреваемым распределителем), поскольку форма имеет примерно комнатную температуру. При заполнении формы температура расплава снижается как в направлении течения расплава, так и в поперечном направлении. Образуется пристенный слой затвердевшего полимера, средняя толщина которого уменьшается при повышении температуры поступающего в форму расплава и при увеличении скорости впрыска. В конце стадии заполнения формы охлаждение становится доминирующим процессом. Для компенсации уменьшения удельного объема полимера, вызванного охлаждением, приходится слегка подпитывать форму. Если снять давление до момента застывания расплава во впуске (или при отсутствии обратного клапана), то вследствие высокого давления внутри полости формы может начаться обратное течение расплава. И, наконец, в процессе охлаждения происходит слабое вторичное течение, приводящее к заметной молекулярной ориентации. Это течение вызвано наличием градиента температуры и перетеканием расплава из горячих зон в холодные, компенсирующим объемную усадку при охлаждении. Такие вторичные потоки следует ожидать в местах резкого уменьшения поперечного сечения полости формы. Если вторичное течение невозможно (обычно из-за нехватки материала), то в блоке литьевого изделия образуются пустоты. Во избежание образования пустот необходимо, чтобы масса вводимого в форму полимера превышала или была равна произведению объема внутренней полости формы на плотность полимера при комнатной температуре. [c.537]

    Молекулярно-кинетические свойства связаны с самопроизвольным движением в системе кинетических единиц-молекул и возможным уровнем их локального концентрирования в единице объема и в меньшей степени — с химическим составом. К таким свойствам, называемым коллигативными, относят диффузию, поверхност1юе натяжение, осмотическое давление, упругость пара, температуры застывания и кипения. Определение и исследование указанных свойств позволяет наиболее полно оценить внутренние взаимодействия в системе, а также прогнозировать поведение системы при изменении условий ее существования. [c.18]


Смотреть страницы где упоминается термин Давление внутреннее молекулярное : [c.50]    [c.23]    [c.187]    [c.90]    [c.585]    [c.8]    [c.156]    [c.151]    [c.239]   
Коллоидная химия 1982 (1982) -- [ c.23 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Давление внутреннее



© 2025 chem21.info Реклама на сайте