Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парамагнитные комплексы

    Методом ЯМР исследуется кинетика процессов, протекающих с участием парамагнитных комплексов. Больший интервал сдвигов дает возможность более точно определять константы равновесий и исследовать более быстрые процессы химического обмена. Возможность такого применения метода ЯМР рассматривается в гл. 8. [c.191]

    СПЕКТРЫ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА ПАРАМАГНИТНЫХ КОМПЛЕКСОВ ИОНОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ [c.163]


    Почему же мы все-таки видим спектр парамагнитного комплекса  [c.163]

    Исследуя восприимчивость монокристаллов, можно определить величину ее анизотропии [25—28]. Как мы увидим в главах, посвященных ЭПР и ЯМР комплексов ионов переходных металлов, эти данные применяются в нескольких важных областях. Анизотропию магнитной восприимчивости обычно определяют методом Кришнана, устанавливая критический момент вращения. В статье [31] рассматривается использование метода ЯМР для измерения магнитной восприимчивости веществ в растворе. Раствор парамагнитного комплекса, содержащий внутренний стандарт, вводят в объем между двумя концентрическими трубками. Раствор того же самого инертного стандарта в том же самом растворителе, в котором растворен комплекс, вводят во внешнюю часть конструкции. В этом случае наблюдаются две линии стандарта, причем линия вещества, введенного в раствор парамагнитного комплекса, соответствует более высокой частоте. Сдвиг линии внутреннего стандарта" в парамагнитном растворе относительно диамагнитного раствора АН/Н связывают с разностью объемной восприимчивости ДХ двух жидкостей  [c.156]

    Хунда) при этом центральный ион сохраняет высокое значение спина, так что образуется высокоспиновый парамагнитный комплекс. В случае же сильного поля (высокое значение энергии расщепления) энергетически более выгодным будет размещение максимального числа электронов на -орбиталях при этом создается н и 3 к о с п и н о в ы й диамагнитный комплекс. [c.597]

    Напишите электронную конфигурацию центрального атома в комплексных ионах 1) [Ре (С1М)б] и 2) [Ре(СЫ)ь] . За счет каких орбиталей центрального атома будут образовываться ст-связи с лигандами в первом парамагнитном комплексе и во втором диамагнитном комплексе  [c.90]

    Спектры ЯМР парамагнитных комплексов ионов переходных. мета.гюв 165 [c.165]

    Исследование магнитной восприимчивости показывает, что-комплексы Р(3 (И) и Р1 (II) диамагнитны, а большинство комплексов N1 (II) парамагнитны. Комплексы (структурные единицы) [c.159]

    К сожалению, в большинстве парамагнитных комплексов ионов переходных металлов число атомов настолько велико, что расчет методом МО всего комплекса практически невозможен. Кроме того, даже если число атомов приемлемо, встает вопрос, может ли расчет, проведенный по расширенному методу Хюккеля или по методу ЧПДП, дать разумные волновые функции для соединений с такой большой разницей в величинах зарядов, какая существует между ионом металла и лигандом. При рассмотрении таких систем предполагается, что ион металла дает по крайней мере меньшее возмущение к вкладу протона в молекулярную орбиталь, представляющую собой главным образом МО неподеленной пары, и в другие молекулярные орбитали свободного лиганда, участвующие в связывании. Это допущение разумно для большинства комплексов, в которых прочность связи металл — лиганд составляет 10—20 ккал/моль. С учетом этого приближения проводится расчет по методу МО свободного лиганда и анализ электронной плотности с использованием волновых функций нейтрального лиганда (см. гл. 3). Последний позволяет определить, какими должны быть величины Л, если на каждой из орбиталей, которые, как ожидается, смешиваются с орбиталями металла при образовании комплекса, находится по одному электрону. Результаты таких расчетов для различных замещенных пи-ридинов представлены в табл. 12.1. [c.182]


    Предпочтительное применение метода ЯМР для изучения парамагнитных комплексов часто обусловлено увеличением разделения сигналов, причина которого — неэквивалентность входящих в молекулу атомов. Продемонстрировать чувствительность этого метода можно на примере пятикоординационного комплекса основания Шиффа с нике- [c.185]

    Спектры ЯМР парамагнитных комплексов ионов переходных мета.иое 167 Следовательно, полное число электронов в состоянии р выражается как [c.167]

    Спектры ЯМР парамагнитных комплексов иоиов переходных мета.иое 171 [c.171]

    Парамагнитные комплексы содержат неспаренные электроны. В молекулах таких веществ магнитные поля не скомпенсированы они имеют собственный магнитный момент. В диамагнитных веществах все электроны спарены, они выталкиваются из магнитного поля. В комплексе [c.227]

    В подавляющем большинстве случаев спектры ЯМР регистрируются для невязких жидкостей и растворов. При этом подготовка образца предусматривает выбор ампулы, растворителя, концентрации раствора, стандарта для измерения химического сдвига и, если необходимо, сдвигающих реагентов, калибровочных эталонов и других добавок. Жидкость или раствор должны быть, конечно, тщательно очищены и отфильтрованы от гетерогенных частиц. Особенно важно удаление парамагнитных и ферромагнитных примесей, приводящих к чрезвычайно сильному уширению линии и даже исчезновению спектра. Хотя, как было сказано выше, добавка некоторых парамагнитных комплексов — сдвигающих реагентов, не только не портит спектр, а бывает даже полезной. Важен также контроль температуры образца. [c.53]

    Однако спектры парамагнитных комплексов редкоземельных элементов, у которых /-оболочка заполнена не более чем наполовину (4/ ) и спин-орбитальное взаимодействие мало, бывают обычно очень четкими и информативными, например, для Gd(III). Для других элементов наблюдение спектров ЭПР требует гелиевых температур. Если возбужденные электронные состояния лежат близко к основному состоянию, то время спин-решеточной релаксации Т мало, и линии уширяются, т. е. для наблюдения спектров требуется понижать температуру. [c.72]

    Иное положение складывается, когда на -орбиталях центрального иона находится большее число электронов. Размещение их в соответствии с правилом Хунда требует затраты энергии для перевода некоторых электронов на .у-орбитали. С другой стороны, при размещении максимального числа электронов на е-орбиталях нарушается правило Хунда и, следовательно, необходима затрата энергии для перевода некоторых электронов на орбитали, на которых уже имеется по одному электрону. Поэтому в случае слабого поля, т. е. небольшой величины энергии расщепления, энергетически более выгодным оказывается равномерное распределение -электронов по всем -орбиталям (в соответствии с правилом Хунда) при этом центральный ион сохраняет высокое значение спина, так что образуется высокоспиновый парамагнитный комплекс. В случае же [c.358]

    Уширение сигналов н скорость релаксации. Уширение сигналов п парамагнитных комплексах обусловлено увеличением скорости релаксации. [c.298]

    Контактный и псевдоконтактный сдвиг. Особенности спектров ЯМР парамагнитных комплексов обусловлены тем, что центральным парамагнитный ион (ПИ) создает локальное магнитное поле вблизи магнтных ядер лиганда. Поскольку магнитный момент алектрона примерно в 10 раз превышает магнитный момент ядра, локальное магнитное поле может достигать Ю Э. В результате сигналы резко смещаются и уширяются. Г сли электронная релаксация медленная и нет быстрого обмена исследуемых ядер в сфере парамагнитного иона, должны наблюдаться два резонансных сигнала, соответствуюи1ие значениям электронного спина /2- Но из-за н. большого смещения и уширения исследование спектра ЯМР в этом случае становится практически невозможным, более информативен спект ) ЭПР. [c.297]

    На раннем этапе развития метода ЯМР было широко распространено мнение, что снять спектр ЯМР парамагнитного комплекса практически невозможно, поскольку электронный спиновый момент настолько велик, что он должен вызывать быструю релаксацию возбужденного ядерного состояния, а это даст малое Т, и широкую линию. Подобная ситуация действительно наблюдалась для некоторых парамагнитных комплексов, в частности комплексов Мп(П), однако во многих других случаях это предположение не подтвердилось. Например, на рис. 12.1 представлен рассчитанный [1] спектр ЯМР парамагнитного комплекса Ni( HзNH2)g , там же для сравнения дан спектр ЯМР СНзЫН . В связи со сказанным возникает несколько вопросов  [c.163]

    Именно по этой причине большинство работ в области ЯМР парамагнитных комплексов посвящено исследованию систем, в которых доминирует один из вкладов—контактный или псевдоконтактный. Мы же уделим основное внимание системам с доминирующим контактным вкладом. В литературе обсуждался тот факт, что у молекул с почти изотропными -факторами псевдоконтактный вклад отсутствует. Комплексы общей формулы где Ь — монодентатный лиганд, не имеют псевдоконтактного вклада [13]. Если комплекс МЕ " характеризуется ян-теллеровским искажением, следует ожидать, что в шкале времени ЯМР в растворе оно будет динамическим. Если даже реализуется весьма маловероятная ситуация с нединамическим искажением, тогда быстрый обмен лигандов должен усреднять сдвиг до нуля, поскольку для двух лигандов, находящихся на оси г, функция Зсоз 0 — 1 вдвое больше, чем для четырех лигандов, находящихся на осях х и > , и имеет противоположный знак. Таким образом, средний псевдоконтактный вклад для всех шести лигандов равен нулю. Образование ионных пар может фиксировать искажение. [c.176]


    Возможность качественной интерпретации с применением МО спектров ЯМР парамагнитных комплексов подтверждает достаточно хорошее соответствие результатов приближенных МО-расчетов и экспериментальных данных. Первоначально широкое распространение получил ограниченный расширенный метод Хюккеля [1,16—20]. В настоящее время разработаны программы расчета с применением неограниченного метода ЧПДП. Результаты, полученные этими двумя методами, обычно согласуются (см. далее). [c.180]

    Из проведенного ранее обсуждения химических сдвигов ионизационных пиков РФС электронов оболочки можно сделать вывод, что для электронов оболочки всегда наблюдаются простые спектры, например, для каждого заметно различающегося окружения атома азота наблюдается один пик для Ь-электронов азота. К счастью, зто не всегда так [27]. Мы уже видели, что парамагнитные частицы, такие, как О2, вызывают обменные расщепления линий электронов оболочки. Такие же расщепления, обусловленные обменными процессами, обнаружены и в спектрах РФС парамагнитных комплексов ионов переходных металлов. Кларк и Адамс [60] сообщили о Зх-обменном расщеплении хрома величиной около 4,5 эВ в Сг(ЬГа)з и 3,1 эВ в Сг(Ь -С5Н5)2. Может возникнуть вопрос, должен ли анализ такого расщепления способствовать пониманию деталей контактных сдвигов Ферми в ЯМР, наблюдаемых для парамагнитных частиц. [c.353]

    Один неспаренный электрон обусловливает парамагнитность комплексов [ u(H20)6] +и [Си(ЫНз)4]2+. [c.139]

    Спектры ЯМР парамагнитных комплексов, содержащих магнитные ядра в составе лиганда, можно наблюдать в том случае, когда электронная релаксация быстрая. Если к тому же идет быстрый обмен магнитных ядер, находящихся в различном окружении, то наблюдается один усредненный сигнал. Влияние неспаренного электрона проявляется в том, что сдвиг сигналов лигандов, связанных с ПИ (Лу), имеет порядок 10 м.д., т е. значительно больше, чем в системах с диамагнитными центральными ионами. Но если взять большой избыток лиганда, то сигнал свободного лиганда усреднится с сигналом лиганда, связанного с ПИ, и сдвиг существенно уменьшится. Сигнал можно будеть обнаружить в пределах обычного диапазона си1налов для ядер данного типа (например, для протонов в пределах 10 м,д,). Величину сдвига для комплекса в этом случае нужно рассчитать по уравнению (6,13), предположив, что [МЬ ] ХС . См/С1 . м1 = Л ,чи. =. . = Л м1. =0. [c.297]

    Прп рассмотрепип основных параметров спектров ЯМ1 , которые используются. тля исследования координационных соединений, целесообразно разделить эти соединения на три группы 1) диамаг-нитнЕз1е комплексы в растворах 2) парамагнитные комплексы в растворах 3) твердые комплексы. [c.291]

    Фактически для всех трех групп комплексов параметры одни и те же, но они несколько изменяются и усложняются, благодаря появлению в каждой и 1 последующих г )упп добавочных в 1аимодей-ствий ядро — неспаренный электрон в парамагнитных комплексах, диполь-дипольные взаимодействия в твердых телах. Поэтому основные параметры будут рассмотрены в порядке пх усложнения. [c.291]


Смотреть страницы где упоминается термин Парамагнитные комплексы: [c.188]    [c.346]    [c.74]    [c.312]    [c.227]    [c.65]    [c.291]    [c.192]   
Квантовая химия (1985) -- [ c.314 ]

Комплексные соединения в аналитической химии (1975) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Исследования биологических комплексов с помощью парамагнитных зондов

Колесников. Синтез и исследование твердых растворов парамагнитных комплексов макрогетероциклических соединений в диамагнитных матрицах

Лантаноиды, парамагнитные комплексы

Парамагнитные ионы и по каждому металлу и лиганду образование комплексов

Парамагнитные комплексы переходных металлов

Парамагнитные металлы, комплексы

Парамагнитные металлы, комплексы с аминокислотами

Парамагнитные сдвиги и ядерная релаксация в комплексах радикалов

СПЕКТРЫ ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА КОМПЛЕКСОВ ИОНОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ

СПЕКТРЫ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА ПАРАМАГНИТНЫХ КОМПЛЕКСОВ ИОНОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Электронный парамагнитный резонанс модельных молибденовых комплексов

ЯМР в парамагнитных комплексах стабильных радикалов

ЯМР парамагнитных комплексов. Контактные сдвиги



© 2025 chem21.info Реклама на сайте