Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсные системы свободнодисперсные

    Пористые тела — это твердые тела, внутри которых имеются поры, обусловливающие наличие внутренней межфазной иовем-ности. Поры могут быть заполнены газом или жидкостью. По классификации дисперсных систем ио агрегатному состоянию фаз пористые тела относятся к дисперсным системам с твердой дисперсионной средой и газообразной или жидкой дисперсными фазами. Свободнодисперсные системы с твердой дисперсной фазой и пористые тела являются своеобразными обращенными системами. Если в первом случае твердым телом является дисперсная фаза, то во втором — дисперсионная среда. С повышением дисперсности суспензии переходят в золи, а затем в истинные растворы. Таким же образом макропористые тела с ростом дисперсности переходят в микропористые тела с размерами пор, соизмеримыми с размерами молекул. В последнем случае, как подчеркивает М. М. Дубинин, представление о внутренней поверхности теряет физический смысл, как и в истинных растворах. [c.129]


    Чтобы легче представить основные процессы, которые могут происходить в дисперсных системах, на рис. VI. 1 показана схема переходов дисперсных систем в разные состояния. Устойчивая свободнодисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации из истинного раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной из фиксации на [c.271]

    Расчет возможного максимального межфазного натяжения по уравнению (VI. 31) показывает, что для ультрамикрогетерогенных систем в зависимости от размера частиц (от 100 до 1 нм) оно должно меняться в пределах от 1,4-10- до 1,4-10 Дж/м . Несмотря на большую межфазную поверхность в лиофильных дисперсных системах, малое межфазное натяжение обусловливает сравнительно небольшую поверхностную энергию, которая способна компенсироваться энтропийной составляющей. Малое значение межфазного натяжения возможно только при значительном межфазном взаимодействии, характерном для жидких дисперсионных сред. Поэтому термодинамически устойчивыми свободнодисперсными [c.285]

    Классификация по взаимодействию между частицами. Согласно этой классификации дисперсные системы разделяются на свободнодисперсные и связнодисперсные. [c.27]

    Все коллоидные и микрогетерогенные дисперсные системы, как мы уже указывали в гл. I, можно разделить на свободнодисперсные и связнодисперсные системы. Если дисперсионной средой является жидкость, то могут быть и переходные системы, отдельные частицы которых связаны друг с другом в рыхлые агрегаты, но не образуют сплошной структуры (структурированные жидкости). Очевидно, подобные агрегаты можно рассматривать как обрывки пространственной сетки, которая по тем или иным причинам не получила полного развития. [c.313]

    Дисперсные системы могут быть свободнодисперсными (рис. 10.2) и связнодисперсными (рис. 10.3, а—в) в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы. К свободнодисперсным системам относятся аэрозоли, лиозоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести. Связнодисперсные системы — твердообразны они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде [c.292]

    Как указывалось в разделе 10.1, дисперсные системы разделяют на две большие группы свободнодисперсные, или неструктурированные, и связнодисперсные, или структурированные системы. Последние образуются в результате возникновения контактов между дисперсными частицами. Особенности этих контактов зависят от природы, величины, формы, концентрации дисперсных частиц, а также от их распределения по размерам и взаимодействия с дисперсионной средой. [c.311]


    Все дисперсные системы можно разделить на 2 класса — свободнодисперсные, в которых частицы дисперсной фазы не связаны между собой и могут перемещаться свободно (суспензии, эмульсии, золи, в том числе аэрозоли) и связнодисперсные, в которых одна из фаз не перемещается свободно, поскольку структурно закреплена. К ним относятся капиллярно-пористые тела, называемые часто диафрагмами или капиллярными системами, мембраны — тонкие пленки, обычно полимерные, проницаемые для жидкостей и газов, гели и студни, пены — жидкие сетки с воздушными ячейками, твердые растворы. [c.14]

    Рассмотренные в предыдущих двух главах процессы нарушения агрегативной устойчивости дисперсных систем приводят в одних случаях к их разделению на макрофазы, в других — к развитию в объеме системы пространственной сетки-структуры, т. е. к переходу свободнодисперсной системы в связнодисперсную, в которой силы сцепления в контактах между частицами достаточно велики, чтобы противостоять тепловому движению и внешним воздействиям. При этом наблюдается радикальное изменение свойств дисперсной системы она приобретает комплекс новых — структурно-механических (реологических) свойств, характеризующих сопротивление деформации и разделению на части, т. е. отвечающих ее способности служить материалом. Система приобретает механическую прочность — главное свойство всех твердых тел и материалов, определяющее их роль в природе и в технике. Закономерности структурообразования в дисперсных системах, механические свойства структурированных систем и получаемых на их основе разнообразных материалов, с особым вниманием к роли физико-химических явлений на границе раздела фаз, изучает обширный самостоятельный раздел коллоидной химии, названный физико-химической механикой. [c.306]

    По какому признаку дисперсные системы разделяются на свободнодисперсные и связнодисперсные  [c.214]

    Характерной особенностью промысловой нефти является то, что она в совокупности с содержащимися в ней углеводородными ССЕ представляет собой единое целое — нефтяную дисперсную систему [29]. При малой обводненности скважинной продукции сырая промысловая нефть классифицируется как малоконцентрированная свободнодисперсная система, эффективная вязкость которой определяется в основном вязкостью дисперсионной среды — нефтяной дисперсной системы (НДС). [c.339]

    На различных стадиях наполнения нефтяной дисперсной системы сложными структурными единицами могут формироваться золи (свободнодисперсные системы), студни и гели (связнодисперсные системы). В зависимости от типа образовавшейся НДС различна и ее прочность. НДС обладают способностью сопротивляться расслоению под влиянием гравитации, т. е. обладают устойчивостью. Внещние силы их деформируют, а внутренние силы упругости (силы сцепления) стремятся сохранить ее форму, обусловливая их прочность. Структура ССЕ определяет также механические свойства НДС - вязкость, упругость, пластичность, - и потому эти свойства часто называют структурно-механическими свойствами. [c.168]

    Структурообразование в дисперсных системах. Физико-химическая механика твердых тел и дисперсных структур. Как указывалось в 105, дисперсные системы разделяют на две большие группы свободнодисперсные, или неструктурированные, и связнодисперсные, или структурированные системы. Последние образуются в результате возникновения контактов между дисперсными частицами. Особенности этих контактов зависят от природы, величины, формы, концентрации дисперсных частиц, а также от их распределения по размерам и взаимодействия с дисперсионной средой. [c.325]

    Диспергирование и конденсация — методы получения свободнодисперсных систем порошков, суспензий, золей, в том числе аэрозолей, эмульсий и т. д. Под диспергированием понимают дробление и измельчение вещества, под конденсацией — образование гетерогенной дисперсной системы из гомогенной в результате ассоциации молекул, атомов или ионов в агрегаты. [c.115]

    Изменение энтальпии ДЯ характеризует межфазное взаимодействие, в результате которого уменьшается межфазное натяжение. Так как образующаяся дисперсная система должна оставаться гетерогенной, то межфазное натяжение не может уменьшиться до нуля, иначе получается истинный раствор. Остаточная поверхностная энергия в гетерогенной лиофильной дисперсной системе компенсируется энтропийной составляющей AS. Наличие AS возможно только у дисперсных систем, частицы которых способны к тепловому (броуновскому) движению. Таким образом, из свободнодисперсных систем термодинамиче- [c.326]

    Наиболее важные и распространенные дисперсные системы — твердые тела, относящиеся к связнодисперсным системам, т. е. к системам с твердой дисперсионной средой. Для твердых тел устойчивость и коагуляция не столь характерны, как для свободнодисперсных систем. Все же в лиофобных твердых дисперсных системах протекают процессы, хотя и очень медленно, сопровождающиеся уменьшением поверхностной энергии, например медленные процессы перекристаллизации, изотермической перегонки (их относят к процессам старения материалов). [c.393]

    Дисперсные системы могут быть свободнодисперсными (рис. 89) и связнодисперсными (рис. 90,с—в) в зависимости от отсутствия или наличия взаимодействия между частицами [c.306]


    Структурообразование в дисперсных системах. Физико-химическая механика твердых тел и дисперсных структур. Как указывалось в 105, дисперсные системы разделяют на две большие группы свободнодисперсные или неструктурированные и связно- [c.333]

    Дисперсные системы могут быть свободнодисперсными (рис. 88) и связнодисперсными (рис. 89, а—в) в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы. К свободнодисперсным системам относятся аэрозоли, лиозоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести. Связнодисперсные системы— твердообразны они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки. Такая структура ограничивает текучесть дисперсной системы и придает ей способность сохранять форму. Подобные структурированные коллоидные системы называют гелями. Переход золя в гель, происходящий в результате понижения [c.309]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Из представленной классификации вртдно, что все дисперсные системы по кинетическим свойствам дисперсной фазы можно разделить на два класса свободнодисперсные системы, в которых дисперсная фаза подвижна, и связнодисперсныс системы — системы с твердой дисперсионной средой, в которой частицы дисперсной фазы не могут свободно передвигаться. [c.14]

    В свою очередь эти системы классифицируют по дисперсности. Для свободнодисперсных и связнодисперсных систем классификации по дисперсиости имеют существенные различия. [c.14]

    До сих пор шла речь, в основном, вообще о структурно-механических (реологических) свойствах свободнодисперсных и связнодисперсных систем, обладающих коагуляционной и конденсационно-кристаллизационной структурой. Вместе с тем эти системы объедиияют большинство различных природных и синтетических материалов, используемых в народном хозяйстве. Поэтому знание общих закономерностей образования систем с определенными структурно-механич ескими свойствами помогает находить методы управления такими свойствами конкретных материалов. К важнейшим материалам относятся металлы, сплавы, керамика, бетоны, пластмассы и др. Как уже указывалось, их реологические свойства описываются типичной для твердообразных систем зависимостью деформации от напряжения (см. рис. VII. 15). Несмотря на небольшую пористость или даже ее отсутствие, все эти материалы полученные в обычных условиях, являются дисперсными система ми. Их структуру составляют мельчайшие частицы (зерна, кри сталлики), хаотически сросшиеся между собой. Технология пере численных материалов, как правило, предусматривает предвари тельный перевод исходного сырья в жидкообразное состояние которое позволяет различными методами регулировать структур но-механические и другие свойства продукта. Технологам, занимающимся получением материалов, очень важно знать механизм образования тех или иных структур, а также методы регулирования их свойств, в частности механических. [c.382]

    Наиболее существенным фактором, влияющим на состояние нефти как дисперсной системы, является температура. Любое образование новой твердой макрофазы в виде отложений на поверхности возможно лишь после возникновения в объеме нефти диспергированной твердой микрофазы /4, 30/. Поэтому при температурах, выше температуры насыщения нефти парафинами, заметных отложений на поверхности оборудования не наблюдается. Опасность образования отложений возникает лишь ниже температуры насыщения, когда образуется твердая микрофаза и нефть превращается в свободнодисперсную систему, в которой дисперсные частицы не связаны друг с другом и способны независимо перемещаться в дисперсионной среде под влиянием броуновского движения или силы тяжести. При дальнейшем снижении температуры, после достижения характерного для каждой нефти ее критического значения, благодаря повышению концентрации дисперсной фазы нефть превращается в связнодисперсную систему - гель, в которой дисперсные частицы связаны друг с другом за счет межмолекулярных сил и образуют своеобразные пространственные сетки, формируя структурные каркасы и превращая нефть в структурированную жидкость. В гелеобразном состоянии дисперсные частицы практически теряют возможность свободно перемещаться внутри системы. Температура гелеобразова-ния является весьма важной технической характеристикой дисперсной системы как минимальная температура, при которой в отсутствии механического воздействия система способна находиться в подвижном состоянии. [c.46]

    Формирование дисперсной структуры нефти определяется, в основ-но.м, температурой и при наличии газа - также давлением в системе. Закономерности протекания процессов, составляющих первую стадию, рассматривались ранее. В пределах температур, в которых возможно, образование отложений, гидравлическое состояние системы на протекании процессов, составляющих первую стадию, практически не сказывается. Влияние гидравлической ситуации на состояние нефти как дисперсной системы проявляется лищь при температурах, ниже температуры гелеобразования, когда механическое перемешивание способно разрушить пространственную сетку, составленную из сшитых кристалликов парафина, и поддерживать нефть в свободнодисперсном состоянии. Между тем именно гидравлическое состояние в системе определяет особенности протекания последующих двух стадий. Закономерности перемещения частиц дисперсной фазы к местам формирования отложений, а также баланс сил, обеспечивающий закрепление частиц на поверхности подложки, полностью обуславливаются гидравлической ситуацией в системе. [c.54]

    ДФ на основе реализации рассмотренных выше факторов ее до достижения высоких степеней самонаполнения системы, а при исчерпании этих факторов - использование внешних энергетических воздействий, позволяющих поддерживать ДФ в разрушенном, распределенном по всему объему состоянии вплоть до установления степени наполнения системы, при которой она становится кинетически устойчивой из-за образования прочных коагуляционных контактов (после снятия внешних энергетических воздействий). Коагуляционная структура может формироваться также путем постепенного осаждения ДФ по мере образования ее в объеме свободнодисперсной части системы вплоть до полного израсходования вещества последней или до некоторого заданного уровня накопления слоя коагулянта, после чего свободно дисперсная система отделяется. В этом случае агрегативная и кинетическая устойчивость ДФ может быть достаточно низкой, а их уровень должен определяться требованиями к составу, свойствам и размерам ее частиц. На практике часто реализуются промежуточные между этими двумя крайними случаями варианты формирования коагуляционных структур (например, коксование в кубах и необогреваемых камерах) и, как правило, условия их формирования в рассматриваемом аспекте полностью определяются качеством загрузки реактора, температурой, давлением и гидродинамикой, определяемой объемной скоростью подачи сырья и интенсивностью его физико-химических и химических превращений. К сожалению, при этом технологические и гидродинамические условия оказываются "стандартизованными" особенностями действующей установки, но не оптимальными с точки зрения формирования связнодисперсной системы с заданной структурой и свойствами, т.е. КМ оказывается в этом аспекте лишь частично управляемой. [c.110]

    Дисперсные системы можно разделить также на свободнодисперсные (золи) и связаннодисперсные (гели). К свободнодисперсным системам относятся бесструктурные системы, в которых частички дисперсной фазы не связаны в одну сплошную сетку и способны независимо друг от друга перемещаться в дисперсионной среде под влиянием теплового движения или силы тяжести. Такие системы не оказывают сопротивления сдвиговому усилию, обладают текучестью и всеми остальными свойствами, характерными для обычных жидкостей. К ним относятся лиозоли, достаточно разбавленные суспензии и эмульсии, а также аэрозоли. [c.18]

    В зависимости от формы частиц дисперсной фазы свободнодисперсных систем различают раздробленные (корпускулярнодисперсные), волокнистые и пленочные дисперсные системы. Если сплошную массу вещества пронизывают поры и капилляры, то такие системы называют часто капиллярнопористыми. К капиллярнопористым системам можно отнести древесину, кожу, бумагу и ряд других веществ. [c.226]

    Тепловое движение частиц дисперсной фазы может обеспечить и агрегативную устойчивость свободнодисперсных систем. При очень низких значениях межфазного натяжения на границе частица — среда, отвечающих рассмотренному в 1 гл. IV условию образования лиофильных коллоидных систем а<13кТ/а , тепловое движение частиц дисперсной фазы делает термодинамически невыгодным укрупнение частиц при коалесценции и изотермической перегонке, т. е. обусловливает полную термодинамическую устойчивость дисперсных систем. Поскольку при коагуляции, как отмечалось выше, изменение свободной поверхностной энергии значительно меньше, чем при коалесценции или изотермической перегонке, можно ожидать, что в процессах коагуляции стабилизирующая роль теплового движения должна быть велика даже при относительно больших значениях поверхностного натяження на межфазной границе, обусловливая частичную (только по отношению к агрегированию частиц) термодинамическую устойчивость дисперсной системы и возможность самопроизвольного протекания обратного процесса — дезагрегации частиц, называемого пептизацией. [c.241]

    Кроме указанных в гл. VI, 2 типов классификации дисперсных систем применяется классификация, учитывающая взаимодействие между частицами дисперсной фазы. Согласно этой классификации все дисперсные системы разделяются на свободноди сперсные и связнодисперсные. В свободнодисперсных системах частицы дисперсной фазы не связаны друг [c.207]

    В свободнодисперсных системах сцепление между частицами дисперсной фазы отсутствует, каждая частица кинетически независима и при достаточно малых размерах участвует в интенсивном броуновском движении. Для структурированных (связнодисперсных) систем характерно наличие неупорядоченной пространств, сетки (каркаса), образованной частицами дисперсной фазы (см. Структурообра-зование в дисперсных системах). Особую группу составляют высококонцентрированные Д. с., в к-рых частицы находятся [c.80]

    Структурообразование в дисперсных системах. Физико-химическая механика твердых тел и дисперсных структур. Как указывалось в 105, дисперсные срютемы разделяют на две большие группы свободнодисперсные, илн неструктурированные, и связнодисперсные, или структурированные системы. Последние образуются в результате возникновения контактов между дисперсными частицами. Особенности зтих контактов зависят от природы, вели- [c.337]

    Чтобы нагляднее представить основные процессы, которые могут происходить в дисперсных системах, на рис. VI. показана схе.ма переходов дисперсных систем в разные состояния. Устойчивая свободнодисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации из истинного раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной их фиксации на небольших расстояниях друг от друга. Между частицами остаются прослойки среды. В результате образуются или флокулы флокуляция — образование агрегатов из [c.315]

    В соответствии со сказанным выше лиофобные твердые дисперсные системы можно рассматривать как кинетически устойчивые системы, имеющие дисперсионную среду с бесконечно большой вязкостью. Вместе с тем их можно представить и как уже скоагулированные системы со сформировавшейся объемной структурой. Такое представление отвечает методам получения большинства твердых материалов, поскольку они обычно образуются пз свободнодисперсных систем или через стадию образования свободнодисперсных систем. Лиофильные твердые дисперсные системы (стабилизированные) отличаются значи-те.тьноп стабильностью свойств во времени. [c.394]


Смотреть страницы где упоминается термин Дисперсные системы свободнодисперсные: [c.271]    [c.284]    [c.342]    [c.243]    [c.290]    [c.365]    [c.595]    [c.309]    [c.154]    [c.316]    [c.306]   
Коллоидная химия 1982 (1982) -- [ c.241 ]

Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.16 , c.127 , c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Система свободнодисперсная



© 2025 chem21.info Реклама на сайте