Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсная форма частиц

    Определите диаметр частиц аэрозоля, используя результат исследования методом поточной ультрамикроскопии в объеме 2,2-10-2 мм подсчитано 87 частиц аэрозоля (дыма мартеновских печей). Концентрация аэрозоля 1-10 кг/м , плотность дисперсной фазы 2 г/см , форма частиц сферическая. [c.127]

    Изменение удельной поверхности с изменением дисперсности (размера) существенно зависит от формы частиц. Из примеров на рис. I. 1 при А а следует  [c.21]


    Кроме химического и минералогического состава, величины и состава емкости поглощения, факторами, влияющими 1[ц свойства глин, являются степень дисперсности и форма частиц. [c.11]

    Пластичные смазки, а в определенной степени и парафинистые масла, при низких температурах являются тиксотропными системами. При нагружении таких систем в момент достижения предела прочности при сдвиге лавинообразно разрушаются основные связи в структурном каркасе. Это соответствует скачкообразному снижению предела прочности от измеряемой величины до нуля. После перехода за предел прочности смазка становится жидкостью. При снятии нагрузки между фрагментами дисперсной фазы (частицами загустителя) практически мгновенно возникают новые связи и формируется новый структурный каркас. Если бы размер и форма частиц дисперсной фазы, прочность и число контактов между ними при деформировании смазки не менялись, то и все свойства смазки сохранились бы неизменными. Фактически дело обстоит сложнее. [c.274]

    Во многих процессах химической технологии — абсорбции, ректификации, экстракции и т. д. происходит движение двухфазных потоков, в которых одна из фаз является дисперсной, а другая — сплошной. Дисперсная фаза может быть распределена в сплошной в виде частиц, капель, пузырей, струй или пленок. В двухфазных потоках первого рода сплошной фазой является газ или жидкость, а дисперсной — твердые частицы, форма и масса которых при движении практически не меняется. Некоторые гидродинамические параметры двухфазных потоков первого рода рассмотрены в разделе 3 данной главы. В потоках второго рода газ или жидкость образуют и сплошную, и дисперсную фазы. При движении частиц дисперсной фазы в сплошной они могут менять форму и массу, например вследствие дробления или слияния пузырей и капель. Математическое описание таких процессов чрезвычайно сложно, и инженерные расчеты обычно основываются на экспериментальных данных. [c.17]

    Влияние свойств пористого слоя на скорость фильтрования нередко выражают посредством параметров, определяющих его структуру, в частности эквивалентного размера пор, пористости слоя, удельной поверхности и щероховатости частиц. С этой целью принимают идеализированные модели пористого слоя, например модель цилиндрических капилляров. Однако в настоящее время принципы построения моделей пористых сред требуют уточнения [24]. Так, следует отметить, что способы определения параметров пористых сред адсорбцией, капиллярной конденсацией, ртутной поро метрией, электронной микроскопией нередко приводят к разным результатам, причем одни параметры модели и объекта могут совпадать, а другие различаться. Использование идеализированных моделей пористых сред не способствует лучшему пониманию процесса фильтрования, а все параметры, характеризующие пористую среду, в конечном счете приходится объединять в один, находимый экспериментально параметр, называемый коэффициентом проницаемости или удельным сопротивлением. К сказанному надлежит добавить, что отмечено шесть типов укладки моно-дисперсных шарообразных частиц в слое, причем форма пор, влияющая на гидродинамику слоя, различна для разных типов укладки [39]. [c.24]


    Из уравнения (3) видно, что величина 5о прямо пропорциональна 1/а. Величину = /а называют степенью дисперсности. Форма частиц пыли зависит от структуры и свойств исходного материала и способа образования пыли. Форма может быть округлой, пластинчатой, игольчатой и др. Этими же факторами определяется и структура поверхности частиц (гладкая, шероховатая и т. д.). Степень отклонения формы реальных частиц от эквивалентной сферы характеризуется фактором формы г) (коэффициентом сферичности). Последний представляет собой отношение поверхности сферы 5сф, эквивалентной частице по объему, к поверхности частицы 5ч [11]  [c.11]

    При оценке токсического действия пыли необходимо учитывать такие факторы, как дисперсность, форма частиц, растворимость, [c.51]

    Действие пыли зависит от ее состава, дисперсности, формы частиц. Попадая в глаза, пыль вызывает конъюнктивит пылевые частицы извести, суперфосфата, [c.213]

    При оценке токсического действия пыли необходимо учитывать такие факторы, как дисперсность, форма частиц, растворимость, химический состав. Наибольшую опасность представляют пыли с частицами размером до 5 мкм, частицы этого размера задерживаются в легких, проникая в альвеолы и частично или полностью растворяются в лимфе. Частицы большего размера задерживаются в верхних дыхательных путях и выводятся наружу при выдохе или откашливании. [c.61]

    Свойства суспензий в основном определяются дисперсностью, формой частиц и величиной поверхности раздела. В результате низкой степени дисперсности суспензии кинетически неустойчивы. В них слабо проявляются броуновское движение. Осмотическое давление и диффузия в суспензиях не обнаруживаются. [c.335]

    В методах химической конденсации вещество коллоида получается с помощью той или иной химической реакции и выделяется ири этом в коллоидном состоянии. Эти методы основаны большей частью на таких взаимодействиях в растворах, которые приводят к образованию вещества в условиях, когда оно нерастворимо. Образуясь первоначально в молекулярно-дисперсной форме, оно стремится выделиться из раствора в осадок. Необходимо так подобрать условия проведения реакции (концентрация реагирующих веществ, pH среды, последовательность операций, температура, перемешивание и пр.), чтобы процесс агрегации, т. е. соединения молекул в более крупные частицы, прекращался на определенной стадии во избежание слипания частиц. Обычно этому способствует применение растворов достаточно низкой концентрации и медленное смешение их. [c.530]

    Охры по цвету подразделяют на золотистые, светлые, средние и темные. Цвет одр зависит не только от содержания гидратированных окислов железа, но и от кристаллической структуры этих окислов, дисперсности, формы частиц и примесей. По цвету охры мало отличаются от желтого железоокисного пигмента. [c.334]

    Для гидрозоля АЬОз рассчитайте высоту, на которой концентрация частиц уменьшается в 2,7 раза. Форма частиц сферическая, удельная поверхность дисперсной фазы гидрозоля а) 10 м б) 0,5-10 М  [c.106]

    Свойства пигментов во многом определяются их кристаллическим строением, которое влияет на цвет, твердость, плотность материала. На процессы приготовления лакокрасочных материалов большое влияние оказывают такие качества пигментов как степень измельчения (дисперсность), форма частиц, плотность, твердость и т.п. [c.180]

    Для получения коллоидных систем, пригодных для формования волокна, наиболее приемлемым является метод эмульсионной полимеризации. Необходимая степень дисперсности, форма частиц, концентрация и стабильность коллоидной системы достигаются регули- [c.8]

    Лакокрасочные материалы представляют собой наполненные полимерные материалы, поскольку применяемые в них пигменты, так же как и наполнители, являются высокодисперсными порошками с частицами различных величины, формы и природы поверхности. Поэтому помимо пигментных свойств, обусловленных дисперсностью, формой частиц и цветом пигмента, они обладают по аналогии с наполнителями определенной активностью , обусловленной физико-химическими процессами, протекающими на их поверхности в полимерных связующих. [c.12]

    В лакокрасочных материалах, как правило, образуются коагуляционные структуры, но реологические свойства их зависят от многих факторов вязкости и структуры самого полимерного связующего, а также природы пигментов и наполнителей, их дисперсности, формы частиц, степени наполнения жидкой среды и т. п. [c.133]

    Экспериментальные исследования дисперсных систем с твердыми частицами, выполненные в широком диапазоне объемных концентраций (до с = 0,5—0,6) при различных формах частиц показали, что эффективная вязкость таких систем может быть выражена формулой [c.48]


    Характер выделяющегося осадка (дисперсность, пористость, форма частиц) определяется температурой осаждения, pH среды, исходным составом раствора, его концентрацией, интенсивностью перемешивания, порядком слива растворов, или условиями введения осадителя [3, 30]. Форма частиц суспензий весьма разнообразна близкая к сферической, игольчатая,- палочкообразная и т. д. [c.101]

    В зоне АБ состав дисперсионной среды, ее растворяющая способность, концентрация твердой фазы, соотношение в твердой фазе парафинов и асфальтенов так же, как размер и форма частиц дисперсной фазы, оказывают влияние на кинетику структурирования системы, ее структурно-механическую прочность и устойчивость. При сохранении в этой зоне постоянства структурной вязкости устойчивость системы не изменяется. При повышении температуры системы свойства геля изменяются, изменяется его механическая прочность н система приобретает текучие свойства прн температуре, соответствующей температуре застывания нефтепродукта (точка Б) гель переходит в состояние аномальной жидкости. [c.37]

    Рассеяние света. Одним из основных преимуществ оптических методов определения размеров частиц является то, что взаимодействие излучения с частицами не меняет структуры системы, т. е. дисперсная с[1стема остается прежней (за исключением тех случаев, когда происходят фотохимические реакции). К числу наиболее перспективных относится метод фотокорреляционной спектроскопии [133, 134]. Причиной светорассеяния является наличие оптических неоднородностей в среде. Такие среды называют мутными. В основе теории рассеяния света в мутных средах лежат следующие предположения 1) размер частиц много меньше длины волны света (/ Д 0,1) 2) не происходит поглощения (раствор не окрашен) 3) форма частиц близка к сферической 4) концентрация частиц мала, так что не происходит интерференции пучков, рассеянных различными частица- [c.94]

    Частицы порошка всегда находятся в контакте. Хотя общая поверхность контакта частиц в порошках очень мала, эта особенность определяет важнейшие технологические характеристики порошков, например, текучесть. Текучесть определяют по скорости вытекания порошка через калиброванное отверстие диаметром 1,5—4,0 мм. Текучесть порошка зависит от плотности, размера и формы частиц, состояния их поверхности, влажности и других свойств. Повышение дисперсности приводит к уменьшению текучести вследствие роста общей поверхности контакта. Увеличение влажности также снижает текучесть порошков. [c.185]

    На вязкость смазок наряду с вязкостью дисперсионной среды влияют природа й концентрация загустителя (с увеличением концентрации и степени дисперсности загустителя вязкость смазки повышается), технология приготовления смазок и другие факторы, определяющие размер и форму частиц загустителя. Для определения вязкости смазок используют капиллярные (АКВ-2, АКВ-4) и ротационные (ПВР-1) вискозиметры. [c.360]

    На оптические свойства дисперсных систем существенное влияние оказывает форма частиц. Ранее указывалось, что при рассмотрении дисперсных систем в ультрамикроскоп анизометрия частиц проявляется в их мерцании в лучах падающего иа них света. [c.267]

    Вредное действие пыли определяется различными ее свой-сгвами. Чем концентрация пыли больше, тем сильнее действие, которое она оказывает на человека, поэтому для пыли установлены предельно допустимые концентрации. Большое значение имеет дисперсность пыли видимая пыль оседает главным образом в верхних дыхательных путях, в полости рта, в носоглотке и удаляется нрн кашле, чихании, с мокротой микроскопическая и ультрамикроскопическая пыль при вдыхании попадает в альвеолы легких и действует иа легочную ткань, нарушая ее основную фуикцию — усвоение кислорода и выделение диоксида углерода. Большое значение имеет форма частиц пыли пылинки с острыми гранями или игольчатой формы, например асбеста, стекловолокна, вызывают более сильное действие, чем волокнистые мягкие пыли. Электрозаряжепность пыли влияет на устойчивость аэрозоля частицы, несущие электрический заряд, I 2—8 раз больше задерживаются в дыхательном тракте. [c.46]

    Рассчитайте отношение осмотических давлении двух гидрозолей (форма частиц сферическая) при условии одинаковая массовая концентрация, но различная дисперсность частиц — Di =40 мкм и O2 = ==20 мкм-, 2) одинаковая дисперсность, но различная массовая концентрация — С[ =7 г/л и С2 = 3,5 г/л. [c.107]

    В уравнении (У.72) и является параметром, который рассматривается как функция Еь/г , Ф, формы частиц, структуры дисперсной системы и т. д. [c.327]

    В химической и смежных отраслях промышленности нашли широкое применение разнообразные машины и аппараты с движущимся объемом твердых дисперсных тел (частиц), образующих по контактным поверхностям единый каскад (скелет/ В самом общем случае дискретные частицы могут иметь различную природу, размеры, форму и ориентацию в пространстве. Частицы могут быть несвязные между собой или связные, прочность связей которых во много раз меньше прочности самих частиц. [c.36]

    С. сопровождается появлением сначала агрегатов частиц и повышением вязкости системы, затем вязкость скачком возрастает на неск. порядков при формировании сплошной структурной сетки. Возникновение сплошной структуры характеризуется появлением у системы предельного напряжения сдвига. Количественно С. характеризуют прочностью структуры, к-рая определяется силой сцепления частиц в контакте, числом контактов в единице объема, дисперсностью, формой частиц, т. е. топологией и параметрами образующейся структуры. Кинетика С., расчет прочностн сгруктуры и разработка методов регулирования С.-осн. направления исследований в этой области физ. химии. [c.446]

    Плотная структура (рис. 89,6) возникает, когда частицы дисперсной фазы укладываются в осадке наиболее плотно, скользя друг относительно друга если первичные частицы соединяются в цепочки, то коагуляционная структура будет рыхлой— арочной (рпс. 89, в). Образованию геля (рис. 89, а) особенно благоприятствует вытянутая форма частиц дисперсной фазы, но при больших концентрациях гелеобразование воз.можно и в случае сферических частиц, если они склонны к цепочкообразоваиию. [c.338]

    При свободлой засыпке в аппарат зернистого материала его частицы получают произвольную упаковку, плотность которой зависит от гранулометрического состава, дисперсности, формы частиц, вида засыпки и некоторых других факторов. Вследствие этого слой получает определенную структуру, одной из характеристик которой является коэффициент плотности укладки К, определяемый по уравнению [c.77]

    Нефелометрически метод исследования основан на измерении интенсивности света, рассеянного дисперсной системой. Более высокая чувствительность и точность этого метода по сравнению о достигаемой в турбидиметрии позволяют определить не только концентрацию и размер частиц в золях, но и форму частиц, меж-частичные взаимодействия и другие свойства дисперсных систем, В основе нефелометрии лежит уравнение Рэлея (V. 9), Если необходимо определить только размер частиц и их концентрацию, то достаточно измерить интенсивность рассеянного света под одним углом, II поэтому уравнение Рэлея можно представить в следующем виде  [c.263]

    В работе [180] обсуждены вопросы, связанные с дисперсностью, фазовым и поверхностным составом и электронной структурой биметаллических катализаторов. Отмечено, что наличие очень малых кристаллитов металла приводит к характеристическому изменению температуры плавления, формы частиц, параметров рещетки и ряду других свойств по сравнению с макрокристаллами. Поверхностный состав сплава часто значительно отличается от объемного, причем поверхность обогащается тем металлом, который имеет меньщую энтальпию сублимации или большее сродство к газовой фазе. [c.254]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    Вертокалы1ый дисперсный поток при медленно изменяющемся размере частиц. Рассмотрим стационарное течение дисперсной системы, в которой в результате фазового перехода происходат изменение объема частиц. Будем предполагать, что при этом форма частиц остается близкой к сферической, монодисперсной состав частиц не нарушается, а изменением плотностей фаз можно пренебречь. Система уравнений сохранения массы дисперсной и сплошной фаз и числа частиц в этом случае будет иметь вид  [c.100]

    Насыпной плотностью р сыпучего материала называют массу единицы объема, занимаемого мйтсрналом при свободном засыпании его в измерительный стакан. Значение р определяют для порошкообразных химических продуктов по ГОСТ 11035—64 (СТ СЭВ 1691—79), а для металлических порошков — по ГОСТ 19440—74 (СТ СЭВ 2283—80). Насыпная плотность сыпучих материалов изменяется в широком диапазоне (от 0,2 до 4 г/см ) в зависилюсти от дисперсного состава частиц, их формы, плотности и способа засыпки в емкость. [c.150]

    Рассчитайте толщину гидратных оболочек S золя АЬОз, если дологическими измерениями установлено, что при К01н1ентрании 12 % (масс.) золь является ньютоновской жидкостью с вязкостью г] = 1,18-10- Па-с. Радиус частиц золя г равен Юнм, Плотность частиц дисперсной фазы р = 4 г/см , дисперсионной среды ро = 1 г/см . Вязкость дисперсионной среды т]о = ЫО Па-с. Коэффициент формы частиц а = 2,5. [c.205]

    Некоторые гели обладают способностью обратимо разжижаться ири механических воздействиях на них (встряхивании, перемешивании, вибрировании и др.), т. е. при встряхивании такой гель разжижается и превращается в золь, который в спокойном состоянии вновь переходит в гель. Подобные превращения могут быть повторены последовательно много раз. Это явление, получившее название тиксотропии, впервые исследовали (1923) Жег-вари и Шалек в лаборатории Фрейндлиха. Оно используется в процессах вибрирования бетона при его твердении. Им объясняется наблюдаемое иногда разжижение илистых грунтов, находя-ц ихся иод вибрирующей нагрузкой. Явление тиксотропии наблюдается не только в гелях, но и в высокодисперсных суспензиях, например в суспензиях бентонитовых глин. Пластинчатая или вытянутая форма частиц и высокая степень дисперсности благоприятствуют приобретению системой тиксотроиных свойств. [c.527]

    В курсе коллоидной химии принято рассматривать только те оптические методы, которые используются в дисперсионном анализе (анализе дисперсности) для определения размера и формы частиц, удельной поверхностп, концентрации дисперсной фазы. К зтнм методам относятся световая и электронная микроскопия, методы, основанные на рассеянии лучей, двойном лучепреломлении и др. [c.247]

    Основными параметрами двойного лучепреломлеиия, по значениям которых можно определить форму частиц, являются показатель преломления обыкновенного и необыкновешюго лучей и Пу, а также угол х между направлением колебаний одного пз лучей и направлением течения дисперсной системы (рис. V. 7) — угол гашения, который характеризует ориентацию частнц. [c.268]

    Н1 и ИЛ СПЛОШНЫХ фаз в самопроизвольное диспергироватг- е вносит основной вклад рост энтропийной составляющей, 0С0( 1 Л 10 ири отрицательных тепловых эффектах растворения. Еще большую роль энтропийная составляющая играет при самопроизвольном диспергировании ВМС (образовании молекулярных коллондиых систем), в процессе которого растет не только рассеивающая энт ропия, но и значительно сильнее энтропия, связанная с различием размеров и форм частиц дисперсной фазы и молекул дисперсионной среды. Лиофильность таких систем обеспечивается не только пли не столько сродством молекул растворителя к дисперсной фа-зе, а в основном энтропийным фактором. [c.287]

    Из оптических методов исследования в коллоидной химии применяются те методы, с помощью которых можно проводить дисперсионный анализ, т. е. определять размер и форму частиц, удельную поверхность, концентрацию дисперсной фазы. К таким методам относятся световая и электронная м-икроскопия, методы, основанные на рассеянии лучей, двойном лучепреломлении и др. [c.111]

    Наиболее информативными, и поэтому широко используемыми методами опр деления дисперсности и формы частиц являются световая и электронная микроскопия. С помощью этих методов можно непосредственно наблюдать частгсцы и измерять их размеры. Нижний предел световой микроскопии составляет до 100 нм, электронной микроскопии— до 2—5 нм. Следует иметь в виду, что электронная микроскопия имеет существенный недостаток, а именно она применима только для исследования сухих образцов и не может быть использована для наблюдения их, например, в жидких средах. [c.111]

    По ИСО 4020/1-79 используется комбинированный загрязнитель, который состоит примерно из одной трети органической части (пламенной сажи с размером частиц 0,1...0,5 мкм) и двух третей неорганической (порошка окиси алюминия со сферической формой частиц). Дисперсный состав неорганических примесей комбинированного загрязнителя приведен на рис. 84. Пробы топлива отбираются через 2 мин и затем через четырехминутные интервалы до достижения перепада давления (и фильтре 0,07 МПа. [c.190]


Смотреть страницы где упоминается термин Дисперсная форма частиц: [c.276]    [c.276]    [c.370]    [c.7]    [c.42]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.300 , c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсность и форма частиц

Дисперсные частицы

Частицы форма



© 2025 chem21.info Реклама на сайте