Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы дисперсные, их свойства

    Предполагая, что дисперсная система обладает свойством локальной однородности, можно совершить параллельный перенос на малую величину х=г г в двух аргументах условного среднего и заменить значение q (t, г г ) на i (г, г-ьх/г). С этим условием полученные в работе [96] выражения для и / с.д имеют вид  [c.70]

    В зависимости от состава и температуры нефть и ее фракции могут образовывать дисперсные системы, приобретая свойства неньютоновских жидкостей, в связи с чем изучению их реологических свойств (прочности и устойчивости против расслоения) придается большое значение. [c.21]


    В значительной степени технологические свойства промывочных жидкостей определяются их устойчивостью, т. е, сохранением во времени основных параметров дисперсной системы дисперсности (удельной поверхности) и равномерного распределения дисперсной фазы в дисперсионной среде (одинаковая плотность по объему). Знание основных факторов устойчивости дисперсных систем и причин, ведущих к ее нарушению, позволяют обоснованно управлять свойствами промывочных жидкостей при бурении, [c.65]

    Рассмотренные в предыдущих двух главах процессы нарушения агрегативной устойчивости дисперсных систем приводят в одних случаях к их разделению на макрофазы, в других — к развитию в объеме системы пространственной сетки-структуры, т. е. к переходу свободнодисперсной системы в связнодисперсную, в которой силы сцепления в контактах между частицами достаточно велики, чтобы противостоять тепловому движению и внешним воздействиям. При этом наблюдается радикальное изменение свойств дисперсной системы она приобретает комплекс новых — структурно-механических (реологических) свойств, характеризующих сопротивление деформации и разделению на части, т. е. отвечающих ее способности служить материалом. Система приобретает механическую прочность — главное свойство всех твердых тел и материалов, определяющее их роль в природе и в технике. Закономерности структурообразования в дисперсных системах, механические свойства структурированных систем и получаемых на их основе разнообразных материалов, с особым вниманием к роли физико-химических явлений на границе раздела фаз, изучает обширный самостоятельный раздел коллоидной химии, названный физико-химической механикой. [c.306]

    Свободно-дисперсные системы проявляют свойства жидкостей обладают текучестью, не оказывают сопротивления сдвиговому усилию. К такому типу систем относятся аэрозоли, лиозоли-змульсии и разбавленные суспензии. [c.17]

    Область I соответствует образованию структурированных нефтяных дисперсных систем в условиях невысоких температур. Образующиеся при этом в нефтяных дисперсных системах пространственные сетки могут придавать системе тиксотропные свойства. Такие системы малопрочны, но для них характерно наличие предельного напряжения сдвига и ползучесть. [c.62]

    Если в результате потери дисперсной системой устойчивости при агрегации и/или седиментации частиц и последующей коалесценции происходит ее разделение на макрофазы, то можно говорить о полном разрушении, гибели , дисперсной системы. Однако во многих случаях процесс ограничивается лишь соприкосновением частиц, причем силы сцепления между ними уже противостоят тепловому движению. Такому переходу от свободно-дисперсного к связно-дисперсному состоянию отвечает образование пространственной сетки частиц—структуры, наделенной новыми по сравнению с исходной свободно-дисперсной системой свойствами — структурно-механическими (реологическими) свойствами, т. е. способностью сопротивляться приложенным механическим воздействиям в ходе формоизменения, течения, разрыва и т. п. иными словами, дисперсная система приобретает свойства материала. [c.302]


    Выводы, сделанные при изучении кинетической теории агрегатного состояния вещества, применимы и к дисперсным системам, многие свойства которых подобны свойствам растворов. Поэтому не случайно эти системы продолжительное время считали особого рода растворами. При изучении свойств дисперсных систем дей- [c.273]

    Наличие сильно развитой поверхности придает всем дисперсным системам общие свойства. Обусловлено это особым состоянием молекул и атомов на поверхности фазы. Поэтому и состав поверхностного слоя обычно отличается от состава каждой из соприкасающихся фаз. [c.6]

    Здесь уместно указать, что наряду с типичными необратимыми и обратимыми системами, согласно классификации Зигмонди и Фрейндлиха, существуют и промежуточные системы, которые трудно отнести к какому-нибудь одному из обоих классов. Это, например, золи гидроокисей некоторых металлов А1(0Н)з, Ре(ОН)з, 5п(ОН)4. Исследование с помощью оптических методов указывает на присутствие в этих системах коллоидных частиц (агрегатов молекул). Имеются и другие основания считать эти системы гетеро-генными. Вместе с тем эти системы обратимы, могут быть получены с достаточно большой концентрацией дисперсной фазы и менее чувствительны к электролитам, чем типичные лиофобные системы. Такие свойства этих систем обычно объясняют исключительно большой гидратацией содержащихся в них частиц. Однако в последнее время ряд исследователей стали считать, что в этих системах в зависимости от способа получения дисперсная фаза может находиться как в виде коллоидных частиц, так и в виде макромолекул. Природа этих растворов до сих пор окончательно не ясна. К этому вопросу мы еще возвратимся в гл. IX и XIV. [c.27]

    Явление тиксотропии. Некоторые гели обладают способностью обратимо разжижаться при механических воздействиях — встряхивании, перемешивании, вибрировании и др. например, при встряхивании гель разжижается и превращается в золь, который в спокойном состоянии вновь переходит в гель. Подобные превращения могут быть повторены несколько раз. Это явление получило название тиксотропии. Оно используется в процессах вибрирования бетона при его твердении. Этим же объясняется уменьшение несущей способности илистых грунтов, происходящее иногда при действии на них вибрирующей нагрузки. Явление тиксотропии наблюдается не только в гелях, но и в высокодисперсных суспензиях, например в суспензиях бентонитовых глин. Пластинчатая или вытянутая форма частиц и высокая степень дисперсности благоприятствуют приобретению системой тиксотропных свойств. [c.23]

    В цементных дисперсных системах дисперсной средой является водный раствор электролита. Наличие ЭДС с сильным электрическим полем и повышенной концентрацией противоионов не может не сказываться на изменении расположенной в нем жидкой фазы— свойствах граничных водных слоев. Следовательно, связанная поверхностью вода (вода граничных слоев) — это и есть вода [c.86]

    Типичные структуры газожидкостных потоков иллюстрируются рис. II.22 на примере кипения жидкости в вертикальной трубе. Внизу имеется однофазный жидкостный поток, который переходит в двухфазную систему и пузырьков пара, распределенных в жидкости. Затем по мере увеличения расхода пара отдельные пузырьки сливаются, образуя крупные снаряды , и возникает пузырьково-снарядная, а затем снарядно-кольцевая, дисперсно-кольцевая и капельная структуры двухфазного потока. Распределение дисперсной фазы в сплошной, характерное для каждой из них, показано на рис. 11.22. Условия образования двухфазного потока определенной структуры и переход одной структуры в другую зависит от совокупности физико-механических характеристик системы (физических свойств фаз, скоростей движения фаз, геометрических характеристик системы). [c.160]

    При изучении неорганической химии вы приобрели первые представления о растворах и процессе растворения веществ в воде. Там же упоминалось, что при смешивании веществ с водой образуются и однородные системы (характерное свойство растворов), и неоднородные, т. е. суспензии и эмульсии. Задумались ли вы, почему одни вещества с водой образуют однородную систему, а другие — неоднородную Чтобы ответить на этот вопрос, следует выяснить, что происходит в процессе растворения веществ в воде. При растворении вещества измельчаются — дробятся. Поэтому истинные растворы, а также суспензии и эмульсии относят к дисперсным системам диспергирование означает раздробление). Дисперсных систем известно много. Они различаются между собой в зависимости от того, какие частицы (твердые, жидкие, газообразные) и в какой среде (жидкой, газообразной) распределены. Так, например, одной из таких дисперсных систем являются дым или пыль в воздухе воздух— смесь газов, а частицы — мелкораздробленные твердые вещества. Туман — это дисперсная система, где среда — воздух, диспергированные частицы — мелкие капли жидкости. Обе дисперсные системы относятся к типу аэрозолей. [c.80]


    При введении в указанные гели А1-мыл или в растворы полиизобутилена твердой дисперсной фазы, например порошка металлического алюминия или магния, вязкость системы возрастает. Свойства полученных суспензий, их старение определяются свойствами структурированных дисперсионных сред, в которых они приготовлены [6]. [c.157]

    Одним из основных вопросов коллоидной химии полимеров является исследование формирования в полимерной системе дисперсных частиц новой фазы. Выделение дисперсной фазы в полимер — полимерных системах и свойства образующихся дисперсных систем является сегодня одной из центральных проблем коллоидной химии полимеров, в создании которой П. А. Ребиндер и его сотрудники сыграли большую роль [5]. Вопрос о фазах, фазовых равновесиях, поверхностях раздела фаз и поверхностных явлениях в гетерогенных системах, подробно рассмотренный П. А. Ребиндером и И. Н. Влодавцем [21, в настоящее время приобрел особо важное значение в свете последних исследований структуры полимерных систем и их термодинамики. [c.181]

    Из приведенных материалов ясно, что наилучшая флокуляция имеет место при определенном соотношении между концентрацией золя или суспензии и дозой ВМФ. Это соотношение зависит от степени устойчивости дисперсной системы и свойств полиэлектролитов. Ограничение дозы ВМФ снизу диктуется желанием достигнуть наилучших результатов очистки, ограничение сверху обусловлено защитным действием чрезмерно больших концентраций флокулянтов [84, 162, 204]. [c.311]

    ТОЛЬКО В гелях, но и в высокодисперсных суспензиях, например в суспензиях бентонитовых глин. Пластинчатая или вытянутая форма частиц и высокая степень дисперсности благоприятствуют приобретению системой тиксотропных свойств. [c.519]

    Растворы высокомолекулярных соединений, ранее рассматривавшиеся как гидрофильные коллоидные системы, обладают свойствами, присущими гидрофобным коллоидно-дисперсным системам (медленной диффузией, низким осмотическим давлением, способностью к диализу, светорассеянием, двойным лучепреломлением при течении и др.). Поэтому такие примеси и загрязнения воды целесообразно рассматривать в одной группе с веществами, образующими коллоидные растворы. [c.53]

    Пластичные смазки занимают промежуточное положение между жвдкими и твердыми смазочными материалами. Они представлякл собой структурированные коллоидные системы. Их свойства зависят прежде всего от особенностей трехмерного структурного каркаса, образующегося из дисперсной фазы, который в своих ячейках удерживает большое количество (80-90 %) дисперсионной среды. Устойчивость структурированной системы зависит от прочности структурного каркаса, сил взаимодействия между его отдельными частицами, между элементами структурного каркаса и дисперсионной средой на транице раздела фаз, числа контактов частиц каркаса в единице объема, электростатических свойств, критической концентрации ассоциации различных мыл и других коллоидно-химических факторов. [c.354]

    Отличительный признак высокодисперсных систем — очень большая поверхность раздела между дисперсной фазой и дисперсионной средой. При увеличении степени дисперсности быстро увеличивается общая и удельная поверхность дисперсной фазы, а с нею — и свободная поверхностная энергия системы. Поверхностные свойства дисперсных систем и явления на границе двух фаз исследуются физико-химией поверхностных явлений. [c.6]

    Коллоидные системы, обладающие свойствами твердого тела, мы будем называть желеобразными системами или студнями. Как видно из приводимого примера, найти резкую границу между твердым и жидким состояниями трудно, — ее фактически нет. Можно сказать, что системы с малыми концентрациями дисперсной фазы, особенно лиофобные, являются истинными жидкостями. При увеличении концентраций, особенно у лиофильных золей, системы приобретают все более и более выраженные свойства твердого тела. Градации в твердости этих систем очень велики, начиная от подвижных студней желатины до твердости кремней и опалов. [c.371]

    Коллоидные системы. Дисперсные системы с размером частиц дисперсной фазы от 1 до 100 нм (10 10 м) называются коллоидными. По размеру частиц они занимают промежуточное положение между грубодисперсными системами и истинными растворами. Коллоидные системы являются ультрамикрогетерогенными системами. Для них характерно наличие высокоразвитой межфаз-ной поверхности, что в свою очередь обусловливает большой запас свободной поверхностной энергии. Это способствует тому, что коллоидные системы являются термодинамически неустойчивыми. В них сильно выражено стремление к уменьшению запаса свободной энергии. Реализация его возможна при уменьшении дисперсности частиц в результате их укрупнения или при адсорбции на их поверхности ионов или молекул, находящихся в дисперсионной среде. Особые свойства коллоидных систем обусловлены размером частиц. Коллоидные частицы настолько малы, что не задерживаются обычными фильтровальными материалами, не видны в обычный микроскоп, не оседают под действием силы тяжести. Устойчивость коллоидных растворов со временем снижается, т. е. они подвержены старению . [c.111]

    Первое направление оценки деформации исходит из предположения, что деформируемое тело обладает свойствами твердого тела, а второе — из того, что оно ведет себя подобно жидкости. В большинстве случаев структурированные дисперсные системы обладают свойствами обоих агрегатных состояний, но могут преобладать свойства одного из них, на чем основано деление таких систем на твердообразные и жидкообразные. [c.248]

    При формировании адсорбционно-сольватного слоя из жидкой фазы необходимо, чтобы энергия ММВ соединений, переходящих в слой, значительно превосходила энергию ММВ среды. Согласно правилу выравнивания полярностей Ребиндера, в слое концентрируется вещество, обладающее полярностью, промежуточной между полярностями веществ в ядре и дисперсионной среде раздела фаз. Так, на границе фаз асфальтены — парафины ароматические углеводороды хорошо взаимодействуют с поверхностью ядер ССЕ. Па следующих стадиях происходит рост размеров ССЕ. При достижении необходимой разности плотностей между исходной фазой и ССЕ, последние начинают перемещаться ио системе и формируют межфазный слой — поверхность разрыва — границы разделяющей фазы (подсистемы) со схожими свойствами. Поверхность разрыва представляет собой переходный слой— реальный объект, обладающий объемом. Внутри межфазного слоя в результате его разрушения происходит непрерывное изменение свойств от характерных для дисперсной системы до свойств новой фазы. В зависимости от степени искривления иоверхности ядер ССЕ различают макрогете-рогенные (плоская поверхность) и микрогетерогенные (искривленная поверхность) системы. По мере перехода от макро-гетерогенных систем к микрогетерогенным существенно увеличивается поверхность раздела и роль поверхностных явлений. При увеличении размеров коллоидных частиц происходит уменьшение их межфазной поверхности, в результате часть со- [c.123]

    Отличительной особенностью реологии, изучающей закономерности структурирования в дисперсных системах, структурномеханические свойства структурированных систем и их изменений иод влиянием внешних воздействий, является рассмотрение механических свойств на моделях, поведение которых описыва- [c.127]

    Под коллоидной химией понимают науку о поверхностных явлениях и дисперсных системах . К поверхностным явлениям относятся процессы, пронсходящне на границе раздела фаз, о меж-фазном поверхностном слое и возникающие в результате взаимодействия сопряженных фаз. Каждое тело ограничено поверхностью, и поэтому объектами коллоидной химии могут быть тела любого размера. Однако поверхностные явления проявляются сильнее всего в телах с высокоразвитой поверхностью, которая придает им новые важные свойства. К таким телам относятся поверхностные слои, пленки, нити, капилляры, мелкие частицы. Совокупность этих дисперсии вместе со средой, в которой они распределены, образует дисперсную систему. Дисперсные системы являются наиболее типичными и вместе с тем сложными объектами коллоидной химии, потому что в них проявляется все многообразие поверхностных явлений, формирующих особые объемные свойства этих систем. Именно такими системами является большинство окружающих нас реальных тел. Отсюда все основания называть пауку о поверхностных явлениях и дисперсных системах физикой и химией реальных тел. Все тела, как правило,— это полпкристал-лнческпе, волокнистые, слоистые, пористые, сыпучие вещества, состоящие из наполнителя и связующего, находящиеся в состоянии суспензий, паст, эмульсий, пен, пыли и т. д. Почва, тела растительного и животного мира, облака и туманы, многие продукты пронз-водства, в том числе строительные материалы, металлы, полимеры, бумага, кожа, ткани, продукты питания —все эго дисиерсные системы, особые свойства которых изучает коллоидная химия. [c.9]

    При проведении аналогий между ультрамикрогетерогенными системами и истинными растворами часто обсуждается специфика применения правила фаз Гиббса к этим системам. Возможность применения к золя]и молекулярно-кинетических законов, законов статистики и энтропии позволяет их рассматривать как системы, обладающие свойствами гетерогенно-дисперсных систем и истпн-ных растворов. Частицы истинных гетерогенно-дисперсных систем не участвуют в тепловом движении. С уменьщением размера до величин, отвечающих ультрамикрогетерогеиной области, частицы постепенно теряют свойство фазы — независимость термодинамических свойств от количества фазы. Как уже известно из разд. II. Д, термодинамические свойства частиц в этой области зависят от дисперсности (изменяются внутреннее давление, растворимость, температура плавления и другие параметры). Одновременно частицы начинают участвовать в тепловом движении системы. Чем меньше частицы, тем дальше система от истинного гетерогенно-дисперсного состояния и тем ближе к истинному раство-ру. [c.209]

    Смазки состоят из жидкой основы (дисперсионной среды), твердого загустителя (дисперсной фазы) и различных добавок. Кроме этих составляющих в смазках присутствуют другие компоненты. Например, в составе гидратированных кальциевых смазок присутствует вода как стабилизируюищй компонент. В некоторых мыльных смазках содержатся глицерин, вьщелившийся при омылении жиров, продукты окисления масляной основы, образовавшиеся при термообработке смазки, а также свободные кислоты или щелочи. Для улучшения эксплуатационных свойств в состав смазок вводят присадки различного функционального назначения и твердые добавки. Таким образом, смазки представляют собой сложные многокомпонентные системы, основные свойства которых определяются свойствами дисперсионной среды, дисперсной фазы, присадок и добавок. [c.308]

    Однако, есяи в качестве дисперсионной с дн использована лиофобная по отношению к высокомапекулярному веществу жйдкость, в которой оно молекулярно не растворимо или растворимо плохо, то в этом случае макромолекулы свер ываются в компактные длот-ные клубки, которые образуют отдельную фазу. Такие дисперсные системы по свойствам не отличаются от типичных лиофобных эоле и [c.69]

    Частицы дисперсной фазы бесструктурной системы не связаны между собой, способны перемещаться независимо друг от друга в среде молекул дисперсионной среды под действием внешних сил. В качестве примера бесструктурных дисперсных систем могут быть указаны обычные суспензоидные золи или разбавленные эмульсии. Подобные суспензоидные системы проявляют свойства истинно вязких жидкостей и не обладают механической прочностью. Отличие свойств этих систем от свойств дисперсионной среды носит количественный характер и заключается в том, что вязкость их больше, чем вязкость дисперсионной среды (за счет заполнения части объема частицами дисперсной фазы). Такое относительное повышение вязкости в бесструктурных системах, как это было теоретически установлено Эйнштейном, пропорционально отношению объема частиц дисперсной фазы к общему объему системы  [c.251]

    Дисперсное состояние вещества и поверхностные явления в дисперсных системах изучаются в разделе физической химии, выделившимся в самостоятельную область науки — коллоидную химию. Название коллоидная химия произошло от слова коИа "(греч.) — клей. Первыми объектами изучения колло- идной химии были растворы высокомолекулярных соединений — желатины, крахмала и др. Впоследствии название коллоидная химия было распрострач нено на гетерогенные дисперсные системы. Однако свойства растворов высокомолекулярных соединений, как систем переходных между гетерогенными дисперсными системами и истинными молекулярны- ми растворами, также изучаются в коллоидной хи-( мин. [c.153]

    Гетерогенные выбросы невозможно даже приблюкенно рассматривать как равновесные системы. Поэтому свойства газовой среды (дисперсионной фазы) и взвешенных частиц (дисперсной фазы) рассматривают раздельно. Для описания характеристик газовой фазы в основном применяется рассмотренное выше приближение смеси идеальных газов, а для дисперсной части - нормальное распределение случайных величин. [c.24]

    Естественно, что направленный синтез новых нитридных материалов требует ясного понимания природы и механизма формирования их функциональных характеристик во взаимосвязи электрош1ое строение — состав — структура — дисперсность — свойства. Решение указанных задач оказывается возможным на основе современных вычислительных методов и моделей квантовой химии твердого тела, позволяющих из первых принципов уверенно моделировать новые, более сложные системы с учетом всего многообразия факторов, определяюнщх состояние реальных материалов [19—23]. [c.34]

    Свойства солевого вулканизата, как и любой гетерогенной системы, определяются свойствами дисперсной фазы и дисперсионной среды и интенсивностью взаимодействия между ними. Действительно, заранее приготовленный полиметакрилат магния не является усиливающим наполнителем, а свойства солевых вулканизатов ухудщаются при использовании вместо МАМ продукта его частичной полимеризации [5]. [c.95]

    Литиевые консистентные смазки представляют собой пастообразные-коллоидные системы, дисперсная фаза которых состоит из волокнистых кристаллических частиц литиевого мыла, образующих трехмерную сетку, удерживающую углеводородное масло. Формирование той или иной структуры смазок, обусловленное процессами кристаллизации мыла, сильно зависит от ряда факторов. К ним следует отнести, в первую очередь, два 1) режим охлаждения смазки и 2) действие добавок различной природы. Влияние обоих факторов сводится к модифицированию первичных частиц мыла и их агрегатов, что заметно изменяет коллоидно-химические свойства смазок. Выяснение зависимости свойств и структуры смазок от условий их охлаждения и влияния добавок имеет, помимо теоретического интереса, большое практическое значение в связи с выявлением оптимальных условий приготовления смазок при их промышленном производстве. В литературе описаны попытки выяснения влияния на свойства и структуру смазок медленного охлаждения ( от 220°) изотропного раствора стеарата лития (Ь151) в углеводородных жидкостях [1—5] с задержкой охлаждения в течение определенного времени формирования структуры при различных температурах (/1). В работах [1—3] было показано, что задержка охлаждения на время не-менее 2—3 часов при /1 = 100° способствует образованию смазки с минимальной пенетрацией, что в нашем обозначении соответствует, по-видимому, максимальной сдвиговой прочности структуры Рг- При исследовании режима медленного охлаждения модельной смазки Ы81 — неполярное вазелиновое масло [4] — в широком интервале г (50—170°) установлена симбатность изменения Рг с tl и ни ири какой tl не было обнаружено максимума на кривой Рг 1 ). Отсутствие экстремального значения Рг для этой модельной смазки связано, по-видимому, с неполярной природой масла, а также, возможно, и с его сравнительно высокой вязкостью, так как оба фактора могут оказывать заметное влияние на формирование структуры смазки. В исследовании [5] было показано, что медленно охлажденная Ы81 — смазка, содержащая добавку щелочи (0,02%. [c.569]

    О(арактерной особенностью коллоидно-дисперсных систем является большая удельная поверхность частиц, достигающая для высокодисперсных тел многих сотен или даже тысяч метров квадратных на грамм. Это придает дисперсным системам особые свойства, которые проявляются прежде всего в поверхностных явлениях, происходящих на границе раздела фаз в межфазных поверхностных слоях. Связано это с тем, что в таких системах значительная доля атомов или молекул, из которых состоит данное тело, локализована на поверхности раздела фаз. Эти молекулы или атомы находятся в несимметричном силовом поле и обусловливают появление избыточной свободной энергии системы, что и яв- [c.5]

    В коллоидных системах поверхность раздела между дисперсной фазой и дисперсионной средой достигает огромной величины по сравнению с поверхностью того же количества вещества дисперсной фазы в компактном виде. Вследствие этого все явления, связанные с особенностями свойств поверхностных слоев, приобретают в коллоидных системах очень большое значение. Поверхность раздела быстро растет по мере увеличенля степени дисперсности вещества. Так, например, 1 см золота, приведенный в состояние тонкодисперсного золя, будет обладать суммарной поверхностью частиц в 6000 (табл. 62). Такое развитие поверхности приводит к появлению у системы новых свойств, которые и определяют принадлежность ее к коллоидным системам. Оно же приводит и к особому усилению адсорбционных процессов. [c.367]

    Возникновение пластичности в системах дисперсный минеральный наполнитель — пластификатор в основном изучено советскими учеными. Показано, что такие системы обладают особой коллоидной структурой, которая является следствием коллоидно-химического взаимодействия на поверхности раздела минеральная частица — пластификатор. Результат такого взаимодействия — образование вокруг частиц развитых ионных слоев и сольватных оболочек, которые, соприкасаясь между собой, образуют пространственную структуру определенной прочности. Появление этой прочности связано с тем, что жидкость (растворитель) и пластификатор, находящиеся в пределах ионных слоев и сольватных оболочек, отличаются по свойствам от свойств таковых в макрообъеме. [c.158]

    Следовательно, ультрамикрогетерогенные системы, обладая свойством многофазности, в зависимости от условий и дисперсности могут проявлять это свойство в разной степени. В той или иной степени они проявляют и свойства истинных растворов, следуя молекулярно-кинетическим законам. Таким образом, золи представляют собой переходные системы между истинными гетерогенно-дисперсными системами и истинными растворами. В это.м состоит философский смысл перехода количества в качество. [c.248]

    Эмульсия представляет дисперсную систему двух несмеши-сающихся жидкостей, лиофобных одна по отношению к другой. Это связано с тем, что одна жидкость состоит из полярных молекул (вода), а др /гая —из неполярных или слабо полярных молекул (масло). Действие эмульгатора заключается в сообщении лиофобиой системе лиофильных свойств. Эмульгатор, располагаясь слоем на границе раздела двух жидкостей, должен иметь гидрофильную (полярную) часть, которая связывается с водной фазой, и гидрофобную (неполярную) часть, связывающз юся с маслом (рис. 73). Благодаря этому пони- [c.152]


Смотреть страницы где упоминается термин Системы дисперсные, их свойства: [c.171]    [c.365]    [c.74]    [c.44]    [c.533]   
Физическая и коллоидная химия (1964) -- [ c.14 , c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Системы свойства



© 2025 chem21.info Реклама на сайте