Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние теплового движения

    Высокоэластическая деформация вызвана изменением конформаций макромолекул и связана с изменением сегментального теплового движения макромолекул в приложенном поле сил. При одноосном растяжении полимера макромолекулы стремятся распрямиться и ориентироваться вдоль направления действия сил. После снятия нафузки под влиянием теплового движения постепенно восстанавливается первоначальная среднестатистическая конформация макромолекул. Время, необходимое для перехода системы в равновесное стабильное состояние (время релаксации), в зависимости от выбранных условий и жесткости макромолекул может составить от 10 с до 10 лет. [c.134]


    Разность ifi — fi), как можно видеть из этого рисунка, очень мала я энергетический барьер в этом случае практически отсутствует. Поэтому лиофильные системы (в новом смысле этого слова) способны к самопроизвольному диспергированию под влиянием теплового движения. [c.238]

    Мы видели, что при малых расстояниях между молекулами притяжение в основном вызвано химическими взаимодействиями, т. е. такими, которые сопровождаются обобществлением электронов. Именно такие взаимодействия, как будет показано далее, определяют особенности строения большинства жидкостей. Поэтому жидкости можно рассматривать как макроскопические молекулы, строение которых постоянно варьирует, испытывая под влиянием теплового движения небольшие отклонения от среднего. Отсюда следует, что понятие о малых молекулах как о некоторых химически изолированных частицах не вполне строгое даже для газов, еще менее строгое для жидкостей [13]. Оно сохраняет свой смысл, если химические связи между малыми молекулами на порядок слабее, чем химические связи атомов в молекулах. Но оно теряет обычный смысл, если малые молекулы образуют друг с другом связи, почти столь же прочные, что и внутримолекулярные. Понятие об ионах в конденсированной фазе тоже имеет приближенный характер. Оно оправдано лишь в той мере, в какой можно пренебречь химическим взаимодействием между ионами и их окружением. [c.99]

    Рассмотрим строение поверхности адсорбционного катализатора, когда на поверхность носителя нанесено небольшое количество металла (например, платина на силикагеле) (рис. 111, а). Согласно современным взглядам твердое кристаллическое тело (носитель) состоит из большого числа микроскопических участков — блоков или областей миграции, разделенных геометрическими и энергетическими барьерами. При нанесении на носитель небольшого числа атомов металла на каждую такую область миграции попадет несколько атомов металла. Под влиянием теплового движения атомы металла могут перемещаться внутри этих областей миграции, но переход из одной области миграции в другую затруднен наличием между ними геометрических (рис. 111,6) и энергетических (рис. 111, ) барьеров. Несколько атомов металла-катализатора внутри области миграции называются ансамблем. В разных областях миграции может находиться разное число атомов металла. Но каталитическое действие проявляют только ансамбли с определенным числом атомов металла внутри области миграции. Такие ансамбли получили название [c.449]


    Вращение отдельных атомных группировок вокруг направлений валентных связей в молекулах даже небольшой длины приводит к появлению большого количества особого типа стереоизомеров, которые получили название поворотных изомеров (ротамеров). Происходящее под влиянием теплового движения вращение отдельных частей молекулы реализуется без существенного изменения валентных углов и межатомных расстояний вариации их значений находятся в пределах 2-3%. При достаточно большой длине макромолекула может последовательно приобретать различную форму от растянутой (рис. 2.1, [c.77]

    В соответствии с возможностями осушествления конформационных переходов под влиянием теплового движения полимеры можно классифицировать следующим образом  [c.88]

    Макромолекулы могут изменять свою конформацию не только самопроизвольно под влиянием теплового движения, но и под воздействием приложенного силового поля. В этом случае [c.88]

    Выше отмечалось, что структура полимерных жидкостей (концентрированных растворов и расплавов полимеров) моделируется системой взаимодействующих агрегатов, пачек макромолекул, имеющих флуктуационный характер под влиянием теплового движения полимерные цепи постоянно ассоциируются в более или менее упорядоченные флуктуирующие рои, которые в свою очередь под влиянием теплового движения распадаются. [c.184]

    В этом случае снижается влияние теплового движения на изменение структуры и состояния нефтяной дисперсной системы. Важную роль в этих системах играют межмолекулярные взаимодействия, которые ответственны за структуру структурированных нефтяных дисперсных систем. Следует отметить важные особенности поведения нефтяных дисперсных систем при пониженных температурах. При понижении температуры нефтяной фракции уменьшается тепловое движение молекул жидкости, замедляется перемещение и конфигурационное изменение макромолекул в пачках и пакетах, начинаются процессы достройки пакетов и пачек углеводородами, кроме того может происходить создание новых пачек и пакетов из-за пересыщения раствора при понижении температуры. На поверхности частиц дисперсной фазы, состоящей в том числе из асфальтенов, смол, других включений, может происходить достройка отдельных их участков, с образованием усов , которые вырастают из мицеллярных структур. Происходит смыкание мицеллярных структур с созданием крупных агрегатов или глобул. Это приводит к снижению агрегативной и кинетической устойчивости нефтяных дисперсных систем. Указанные процессы можно описать аналитически с применением математического аппарата. [c.62]

    Ниже, в главе об электрокинетических явлениях, мы увидим, что в водных растворах электролитов около межфазной поверхности образуется так называемый диффузный электрический слой. При низких концентрациях электролита расстояние, на которое могут удаляться свободные заряды двойного слоя (ионы) от поверхности в глубь раствора под влиянием теплового движения, может достигать 1 мкм, т. е. толщина диффузного слоя будет порядка десятков тысяч ангстрем. [c.93]

    ИОНОВ ИЗ кристаллов в раствор происходит в результате взаимодействия их с молекулами растворителя и образоваиия связей между ионами и молекулами растворителя. На все эти процессы оказывает влияние тепловое движение (колебание) взаимодействующих частиц. Легко диссоциируют молекулы с ионной и ковалентной поляр- [c.207]

    В формуле (10.2) мы зафиксировали таким образом зависимость времени релаксации в полимере от напряжения. Релаксационные процессы происходят не только под влиянием теплового движения,, но и под влиянием действующей силы, т. е. тогда, когда сегмент накапливает суммарный запас тепловой и механической энергии, достаточный для преодоления энергетического барьера. В стеклообразном состоянии вклад механической энергии является решающим в его отсутствие релаксационные процессы вообще не происходят. [c.150]

    Наиболее важные свойства каучукоподобных материалов — низкая температура стеклования и сохранение эластических свойств в широком интервале температур (стр. 26). Это объясняется их структурой длинные изогнутые цепи, способные под влиянием теплового движения и механических усилий изменять форму. [c.177]

    В 80 раз. Отделившиеся молекулы или ионы под влиянием теплового движения всех частиц раствора перемещаются (диффундируют), равномерно распределяясь между молекулами растворителя. [c.29]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]


    Чем меньше время жизни, тем больше ширина линии, т. е. как бы увеличивается число почти одинаковых, но все же слегка отличных по энергии путей протекания процесса. В случае влияния теплового движения молекул [c.302]

    Оя, это соответствует полям Я 2-10 Э. Следовательно, из третьего условия имеем т > 4 10 с, в то время как при комнатной температуре в полупроводниках и металлах обычно г = 10" с. Поэтому опыты по изучению циклотронного резонанса необходимо проводить с химически очень чистыми образцами с совершенной кристаллической решеткой и при очень низких температурах (—4 К), когда ничтожно мало влияние теплового движения атомов кристалла. [c.391]

    Высокоэластическое состояние, свойственное только высокомолекулярным полимерным соединениям,характеризуется способностью тел к значительным обратимым деформациям под Е,лиянием сравнительно небольших приложенных напряжений. Обратимые деформации называются высокоэластическими. Высокоэластическое состояние полимеров осуществляется в определенном интервале Тс—Тт, называемом температурным интервалом стеклования. Выше Тс отдельные группы звеньев цепных молекул начинают перемещаться под влиянием теплового движения подобно тому, как перемещаются молекулы простых жидкостей. Однако, поскольку все звенья связаны в цепи, нх тепловое перемещение ие является необратимым. Наоборот, вследствие взаимных связей в полимере при деформации его возникают внутренние напряжения, приводящие к механической обратимости высокоэластических деформаций. [c.494]

    Конформация макромолекулы (цепи)—это размеры и конкретные формы, которые макромолекула принимает I результате суммарного влияния теплового движения и внешних сил. (Следует отметить, что тепловое движение приводит к усреднению конформаций, и когда мы говорим о той или иной конформации, имеется в виду усредненная конформация.) В зависимости от соотношения этих сил и интенсивности теплового движения могут реализоваться различные конформации (рис. 1.10)  [c.42]

    Характерный для жидкости вид функции ф (4), выраженной в виде отношения локальной плотности к средней плотности жидкости, в зависимости от межмолекулярного расстояния представлен на рис. 2.2. Как следует из этого рисунка, на расстоянии до 4—6 межмолекулярных расстояний в жидкостях наблюдается некоторая упорядоченность, выражаюнцаяся во флуктуациях плотности и аналогичная упорядоченности расположения атомов в кристаллической решетке твердого тела. Вместе с тем по рис. 2.2 можно установить, что под влиянием теплового движения ближний порядок, обусловленный межмолекулярными силами, нарушается и на расстояниях больше указанных полностью исчезает. Такая структура [c.29]

    Полимерные цепи (вне зависимости от регулярности их строения) под влиянием.теплового движения и межмолекулярного взаимодействия ассоциируются во флуктуационные, более или менее упорядоченные пачки. Пачки под влиянием теплового движения то воссоздаются, то распадаются. Однако вследствие больших размеров макромолекул время жизни пачек может быть весьма большим. Если продолжительность жизни роя молекул низкомолекулярной жидкости составляет 10" с и менее, то в случае твердого полимера она возрастает до многих лет. Чем менее гибим макромолекулы, тем больше время жизни пачек. [c.153]

    Резины — это твердые тела, имеющие пространственную трехмерную сетку из соединенных между собой полимерных цепей, которая препятствует их течению и обеспечивает при каждом уровне деформации существование определенной восстанавливающей силы. В растворах и расплавах полимеров, так же как и в аморфных участках частично-кристаллических гюлимеров выше температуры стеклования, восстанавливающая сила будет со временем уменьшаться. Иначе говоря, в них при внезапном приложении деформации возникают силы (или напряжения), которые релаксируют во времени. Причину такого поведения объясняет выражение (2.1-3). Абсолютная величина А5 с течением времени уменьшается, так как гибкие, жестко не закрепленные цепные молекулы под влиянием теплового движения вновь возвращаются к статистическим конформациям, преодолевая силы межмолекулярного воздействия, препятствующие сворачиванию в клубок (рис. 2.5). [c.43]

    Диффузией называют самойроиз1зольный процесс выравнивания концентрации (и химических потенциалов) молекул (частиц), протекающий под влиянием теплового движения. [c.89]

    Поворот поля (или, что то же, кюветы с таким жидким монокристаллом) на 90° при напряженностях порядка 12,5-10 А/м за полчаса приводит к полной переориентации. При снятии поля эта сверхструктура сохраняется в течение суток и более, а следы макроориентации удается наблюдать еще через неделю примерна таково время структурной релаксации жидкого монокристалла (т. е. время, в течение которого под влиянием теплового движения вновь развивается доменная структура). [c.279]

    Дисперсные системы можно разделить также на свободнодисперсные (золи) и связаннодисперсные (гели). К свободнодисперсным системам относятся бесструктурные системы, в которых частички дисперсной фазы не связаны в одну сплошную сетку и способны независимо друг от друга перемещаться в дисперсионной среде под влиянием теплового движения или силы тяжести. Такие системы не оказывают сопротивления сдвиговому усилию, обладают текучестью и всеми остальными свойствами, характерными для обычных жидкостей. К ним относятся лиозоли, достаточно разбавленные суспензии и эмульсии, а также аэрозоли. [c.18]

    Различные фориы макромолекул, получающиеся под влиянием теплового движения и не сопровождающиеся разрывом химических связей, называются ее конформациями. [c.183]

    Высокоэластическое состояние полимеров осуществляется в определенном интервале — Т , называемом температурным интервалом стеклования. Выше 7 с отдельные группы зв ньев цепных молекул начинают перемещаться под влиянием теплового движения подобна тому, как перемещаются молекулы простых жидкостей. Однако, поскольку все звенья связаны в цепи, их тепловое перемещение не является необратимым. Наоборот, вследствие взаимных связей в полимере при деформации его возникают внутренние напряжения, приводящие к механической обратимости высокоэластических деформаций. [c.397]

    В данном случае эмульсии образуются под влиянием теплового движения частиц, вполне достаточного для отрыва капелек жидкости. СамопропзБОЛьно образующиеся эмульсии являются термодинамически устойчивыми системами. Примером эмульсий такого вида являются эмульсолы — эмульсии некоторых масел, самопроизвольно образующихся в воде или в водно-спиртовых смесях при наличии в них 10—40% натриевых мыл. Эмульсолы используют в качестве смазочио-охлаждающих жидкостей при обработке металлов. На процесс эмульгирования помимо природы эмульгатора и рода механического воздействия влияют температура, соотношение фаз и другие факторы. [c.393]

    Изменение формы молекул под влиянием теплового движения или под действием внещяего поля, ие сопровождающееся разрывом химических связей, называется конформационпым превращё нием. Формы молекул, переходящие друг в друга без разрыва химических связен, называются конформациями, или поворотными изомерами. [c.82]

    Развитие представлений о гибкости цепей полимеров, накопление большого экспериментального материала по изучению их структур привели к созданию иных представлений о взаимном расположении макромолекул в полимере. Так, аморфный каучукоподобный полимер стала рассматривать как савокуп ость ог(СНЬ длинггы е, гибких, перепутанных между собой цепей, коюрые под влиянием теплового движения звеньев непрерывно изменяют свою форму. Модель кристаллического полимера предусматривала сосуществование в нем кристаллических и аморфных областей, причем принималось, что одна пепь может проходить через ряд кристаллических и аморфных областей. Согласно этой модели, в аморфных областях участки цепей могут взаимно перепутываться. [c.143]

    Релаксация — буквально означает ослабление , но обычн под Этим термином понимают процесс установления статистиче ского равновесия в физической или в физико-химической систем Скорость установления равновесия связана с вероятностью пере хода системы из одного состояния равновесия в другое. Эти пере ходы могут Происходить под влиянием различных причин, Так, жидкости под влиянием теплового движения Происходят непрерыЕ ные перегруппировки молекулярных роев вероятность этого нрс иесса выражается законом Больцмана  [c.166]

    Метод пептизации. Пептизацией называют переход в коллоидный раствор осадков, образовавшихся при коагуляции. Термин пептизация был введен еще Грэмом на основании чисто внешнего сходства процесса пептизации с растворением белков под влиянием пепсина. Пептизация может происходить в результате промывания осадка или под действием специальных веществ — пептизаторов. При этом из осадка удаляются коагулирующие ионы или пептизатор адсорбируется коллоидными частицами осадка, что ведет к образованию двойных электрических слоев или сольватных оболочек вокруг коллоидных частиц и к преодоленик> благодаря ним сил сцепления между частицами. Ставшие свободными частицы под влиянием теплового движения распределяются равномерно во всем предоставляемом им объеме жидкости. Таким образом, пептизация является процессом,- как бы обратным коагуляции. [c.234]

    Химические микроиримеси, свободно отдающие BajieuTin.ie электроны под влиянием теплового движения, сообщают [c.21]

    Размеры макромолекулы определяются ее длиной I и диаметром d. Если макромолекулу представить в форме вытянутой цепн определенной конфигурации, то рассчитать / и d не составляет труда. Мапример, для полиизобутилена (ПИБ) диаметр н длина мономерного звена составляют 0,5 и 0,154 нм соответственно. Если число таких звеньев Ю", то макромолекула ПИБ будет иметь длину 0,154-10 им, а отношение длины к диаметру составит 3100. Однако рассматривать макромолекулу в виде вытянутой цепи -в форме плоского зигзага нельзя, поскольку при этом не учитываются роль взаимодействия (притяжения н отталкивания) атомов и их групп, в частности боковых, и влияние теплового движения, которое существует при любой температуре, отличной от абсолютного нуля. [c.37]

    Все рассмотренные выше надмолекулярные структуры полимеров, начиная с упорядоченных структур ближнего порядка (домены, кластеры) и кончая совершенными монокристаллами, в которых реализуется тре. мсрный дальний порядок, формируются в основном в условиях доминирующего влияния теплового движения. При наложении внешних деформирующих напряжений надмолекулярная структура будет изменяться и полимер будет переходить в особое состояние — ориентированное. [c.64]


Смотреть страницы где упоминается термин Влияние теплового движения: [c.71]    [c.188]    [c.67]    [c.234]    [c.397]    [c.218]    [c.186]    [c.19]    [c.228]    [c.15]    [c.150]    [c.710]    [c.248]    [c.252]    [c.34]   
Смотреть главы в:

Структура макромолекул в растворах -> Влияние теплового движения




ПОИСК





Смотрите так же термины и статьи:

Влияние теплового движения атомов на упругое рассеяние v-квантов

Движение тепловое

Дезориентирующее влияние теплового движения молекул



© 2025 chem21.info Реклама на сайте