Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватный слой толщина

    Рассмотрим кинетику изменения толщины сольватного слоя сложной структурной единицы в зависимости от РС дисперсионной среды (нерастворитель, плохой растворитель, хороший растворитель). В этом случае в обратимой НДС осуществляются два противоположных процесса. С одной стороны, по мере добавки растворителя растворяющая сила дисперсионной среды изменяется, в результате чего повышается степень дисперсности ассоциатов это приводит к увеличению поверхностной энергии и толщины сольватного слоя сложной структурной единицы. С другой — при взаимодействии дисперсионной среды с поверхностью сольватного слоя толщина последнего уменьшается. [c.60]


    В работе [129] было изучено изменение термодинамического потенциала Гиббса как функции радиуса зародыша и толщины слоя. Следуя логике данной работы, потенциал Гиббса единичного зародыша новой фазы радиусом г, окруженного сольватным слоем толщиной Л в дисперсионной среде, можно представить уравнением [c.86]

    Представим себе сближение двух твердых дисперсных частичек, взаимодействующих с данной дисперсионной средой, т. е. покрытых адсорбционно-сольватными слоями толщиной к. Медленное сближение таких частичек с уменьшением прослойки дисперсионной среды между ними происходит без затраты работы и без изменения свободной энергии лишь до некоторого расстояния х = 2А. Начиная с этого расстояния, частички отталкиваются, что является результатом молекулярного сцепления жидкой среды с поверхностью частичек. [c.87]

    Если шарообразные коллоидные частицы покрыты сольватным слоем толщиной к, то объемная доля ф дисперсной фазы вычисляется по уравнению [c.332]

    Суть рассматриваемого фактора стабилизации дисперсны> систем состоит в следующем. Представим себе две твердые дисперсные частицы, помещенные в некоторую жидкость Поверхность частиц лиофильна по отношению к данной жидкости. В ре зультате этого частицы покрыты адсорбционно-сольватным слоями толщиной /г. Если такие частицы медленно сближат (при этом прослойка жидкости между ними уменьшается), то такое сближение до известных пределов будет протекать без из [c.325]

    Большая удельная поверхность и, соответственно, значительный запас свободной энергии обусловливают большее или меньшее взаимодействие дисперсной фазы и дисперсионной среды в гетерогенных системах. Практически такое взаимодействие, по-видимому, нельзя отвергать не только в лиофильных, но и в лиофобных системах. Результатом его является образование межфазной, окружающей дисперсные частицы, прослойки конденсированной среды, физические и физико-химические свойства которой аномальны, не сходны с соответствующими свойствами фазы и среды. Если в систему ввести поверхностно-активное вещество (ПАВ), т. е. вещество, молекулы которого могут адсорбироваться на межфазной границе и понижать поверхностное натяжение и запас свободной энергии, то образуется адсорбционно-сольватный слой. Толщина такого слоя может быть весьма значительной, особенно, если адсорбировались длинноцепочечные молекулы ПАВ или макромолекулы высокомолекулярных соединений (ВМС). Адсорбционно-сольватные слои лиофилизуют дисперсную систему, увеличивая ее устойчивость. [c.9]

    Толщина аномального слоя нефти на границе с твердой фазой была впервые определена в работе [117]. В этой работе по величине раскрытия щели до и после фильтрации нефти определяли толщину граничного слоя, образуемого на поверхностях, ограничивающих щель. В результате установлено, что толщина граничного слоя для исследованной нефти на данной поверхности (органическое стекло) составляет 1 мкм. Исследованиями [136, 120] было установлено, что в зависимости от природы твердой подложки и компонентного состава нефти толщина граничного слоя может достигать 2—5 мкм. Причем толщина аномального слоя зависит от градиента давления вытеснения и величины радиуса капилляров. Поэтому в пористой среде с размером пор, соизмеримым с толщиной граничного слоя, адсорбционно-сольватные слои, обладающие аномальными свойствами, должны оказывать значительное влияние на процесс фильтрации. [c.97]


    Для нефтесодержащих вод [10] характерно наличие двойного ионного слоя незначительной толщины, что объясняется присутствием в дисперсионной среде значительных концентраций электролитов. Наряду с электростатическим фактором устойчивости, относительно высокую агрегативную устойчивость нефтесодержащих вод следует объяснять наличием на поверхности частиц адсорбционно-сольватных слоев из молекул (в том числе дифильного строения) различных вешеств, находящихся в дисперсной фазе или дисперсионной среде. [c.59]

    РС среды (вид растворителя), при которой достигается максимальная толщина сольватного слоя (В), определяется по формуле [c.61]

    Как следует из данных табл. 4.2, для нефтесодержащих систем характерно наличие двойного слоя незначительной толщины, что объясняется значительной концентрацией электролитов в дисперсионной среде. Наряду с электростатическим фактором устойчивости относительно высокую агрегативную устойчивость нефтесодержащих вод можно объяснить наличием на поверхности частиц адсорбционно-сольватных слоев из молекул (в том числе дифильного строения) различных веществ, находящихся в дисперсной фазе или дисперсионной среде, и механических примесей. Наличие у частиц дисперсной фазы собственного электрического заряда объясняет их поведение во внешнем электрическом поле. [c.67]

    Второй вариант — поверхностное натяжение дисперсионной среды значительно больше, чем у сольватного слоя ССЕ. Такое соотношение Аб приводит к вытеснению из сольватного слоя ССЕ углеводородов, обладающих малыми значениями поверхностного натяжения. При высоких значениях Лб может не только уменьшаться толщина сольватного слоя и изменяться углеводородный состав в нем, но и разрушаться надмолекулярная структура, вплоть до (ПОЛНОГО ее исчезновения. [c.14]

    Разность скоростей формирования и разрушения сольватных слоев по мере изменения РС среды (равновесие достигается быстро) определяет толщину сольватного слоя на поверхности ассоциата для данного вида растворителя. [c.60]

    Принимаем значения толщин сольватных слоев сложной структурной единицы Л = бо, В = б и в слое С = 6]. [c.60]

    Из приведенной выше формулы видно, что максимальная толщина сольватного слоя сложной структурной единицы тем меньше, чем больше отношение /(гЖь Значительная толщина сольватного слоя (В) может быть получена только при условии К >К2-Удельная растворяющая сила растворителя а может быть рассчитана по Гильдебранду [15], если известны теплота испарения растворителя АН, температура кипения (Т), отнесенные к единице молярного объема раствора (в см моль) [c.61]

    Изменение РС среды (переход от нерастворителя к хорошему растворителю) сопровождается сложными явлениями в нефтяных системах. Кривые изменения толщины слоя надмолекулярной структуры (см. рис. 13, а, кривая I) н сольватного слоя (кривая 2) носят антибатный характер. Между толщиной слоя надмолекулярной структуры и структурно-механической прочностью (кривая 4) и между толщиной сольватного слоя и устойчивостью (кривая 3) сложной структурной единицы наблюдается четкая закономерность. Все эти кривые взаимосвязаны друг с другом. [c.63]

    Повышение РС среды (переход от нерастворителя к плохому растворителю) приводит к снижению толщины слоя надмолекулярной структуры п одновременно непрерывному увеличению толщины сольватного слоя до максимального значения (точка В). В точке В (К = К2) НДС имеет максимальную устойчивость против расслоения системы на фазы. Это объясняется тем, что в точке В ассоциаты имеют максимальную толщину сольватной оболочки, минимальную плотность, что уменьшает движущую силу процесса расслоения. Наличие толстой прослойки между частицами ассоциатов приводит к снижению структурно-механической прочности дисперсной фазы НДС, первый минимум которой достигается в точке Г (кривая 4). [c.63]

    На участке ВМ (кривая 2) или И К (кривая 1) на сольватный слой начинает оказывать интенсивное воздействие дисперсионная среда (переход от плохого растворителя к хорошему). Результатом этого является оттягивание части растворяющей силы сольватного слоя, идущей па компенсацию увеличивающейся РС среды и на возрастание толщины слоя надмолекулярной структуры (участок И К, кривая 1) при одновременном снижении толщины сольватного слоя (участок ВМ, кривая 2). [c.63]

    Рассмотрим второй случай влияния РС среды иа надмолекулярную структуру, неспособную растворяться в нефтяной системе (кристаллит). Поскольку размер кристаллитов в процессе растворения не меняется, образование сольватных слоев формально удобно рассматривать как необратимую реакцию первого порядка. Для этого можно считать, что к концу формирования слоя толщины его будет равна бос. [c.63]

    На рис. 13,6 схематически показано изменение зависимости толщины сольватного слоя от РС дисперсионной среды. С повышением РС среды толщина (кривая 5) сольватного слоя сложной структурной единицы возрастает одновременно повышается устойчивость НДС (кривая 6). При этих условиях структурно-механическая прочность (кривая 7) системы снижается. [c.64]

    На кинетику изменения толщин слоев надмолекулярных структур (в случае ассоциатов), сольватного слоя, устойчивость и структурно-механическую прочность сложной структурной единицы под действием РС среды весьма существенное влияние оказывает состав среды. Обычно в реальных дисперсионных средах применяют смесь различных растворителей, обладающих неодинаковыми (чаще всего аномальными) свойствами, приводящими к неодинаковым сопротивлениям системы при реализации взаимодействия твердой фазы со средой. Это обстоятельство должно быть учтено на практике. [c.64]


    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Па рис. 8 приведены различные модели ССЕ, соответствующие ассоциату, кристаллиту, пузырьку, поре. ССЕ характеризуется во всех случаях геометрическими размерами радиусом ядра г, толщиной адсорбционно-сольватного слоя 1г и их отно-шепнем /г/г. ССЕ может иметь более или менее постоянные раз- [c.76]

    В результате исследования структурно-механических свойств адсорбционных слоев установлено, что толщина новерхностного слоя в битумах может меняться от 10 до 5 мкм при увеличени их прочности [125]. Характеристики адсорбционно-сольватных слоев в битумах зависят от полярности образующих их компонентов. [c.79]

    В процессе сгорания топлив (в двигателях, котельных установках) важное значение имеет скорость горения. Поскольку перед сгоранием топлива переходят обычно из жидкого в парообразное состояние (через стадию дисперсного состояния),большое значение имеет продолжительность жизни возникающих из жидкой фазы ССЕ. Если она больше, чем период сгорания, то регулирование процесса горения возможно при условии управления размера.ми (поверхностью горения) дисперсных частиц, в том числе и толщиной адсорбционно-сольватного слоя. [c.83]

    Структура водонефтяной эмульсии схематично показана на рис. 7.2. Капли (глобулы) диспергированной воды имеют диаметр ( / ) от 0,1 до 1000 мкм, и каждая из них окружена адсорбированной на поверхности глобул сольватной оболочкой -концентратом высокомолекулярных полярных веществ нефти, называемых поэтому эмульгаторами. Наличие этого сольватного слоя толщиной 8 создает как бы защитную скорлупу вокруг каждой глобулы воды, препятствующую слиянию (коалес-ценции) глобул даже при самопроизвольном столкновении. [c.335]

    Структурные единицы (исходные надмолекулярные структуры, промежуточные и конечные их виды) имеют сложное строение, обусловленное природой и геометрической формой макромолекул ВМС, поверхностными силами между ними, взаимодействием дисперсной фазы с диснерсионной средой и другими факторами. Нефтяные фракции, состоящие из смеси полярных и неполярных соединений, взаимодействуют с надмолекулярными структурами, в результате чего вокруг надмолекулярной структуры (ассоциата или комплекса) формируются сольватные оболочки различной толщины. Такая дисперсная частица сложного строения (надмолекулярная структура+сольватный слой) способна к самостоятельному существованию и получила название сложной структурной единицы (ССЕ). [c.13]

    Используя зависимости (1), (2), (5) и (6), можно найти толщину исходного, промежуточного и конечного сольватных слоев при любых значениях РС среды. Максимальная толщина сольватного слоя (В) зависит только от соотношения констант К1МК2 [c.61]

    Аналогично изменению толщины сольватного слоя иод действием РС среды может изменяться и толщина слоя надмолекулярной структуры НДС (ассоциата). Эта толщина формируется под влиянием разницы сил межмолекулярного взаимодействия ВМС и растворяющей силы сольватного слоя. На образование сольватного слоя в свою очередь, как было ранее показано, оказ[>1вает влияние растворяющая сила дисперсионной среды. В общем случае эти изменения могут быть представлены в следующем виде  [c.62]

    Не рассматривая вывод кинетических уравнений формирования слоев надмолекулярных структур, аналогичных уравнениям, выведенным выше для изучения кинетики формирования сольватных слоев, мы остановимся на выводах, вытекающих из этих уравнений. На рис. 13 па основании кинетических уравнений формирования (разрушения) слоев показана зависимость изменения толщины слоев от растворяющей силы диснерсионной среды (иерас-творитель, плохой растворитель, хороший растворитель). РС среды, обусловливает структурно-механическую прочность и устойчивость НДС, оказывающих существенное влияние на многие процессы переработки нефти (в том числе и на процессы произво.дст- [c.62]

    При внешних воздействиях на твердое тело (например, кокс) на первом этапе разрушения формируются микротрещины. На поверхности микротрещин образуется адсорбционно-сольватный слой, который в результате капиллярных эффектов снижает прочность тела (эффект Ребиндера). Вполне естественно, что развитие микротрещин, как элементов новой фазы, сопровождается изменением толщины адсорбционно-сольватного слоя на поверхности трещины и ослаблением действия эффекта Ребиндера. Наличие адсорбционно-сольватного слоя на поверхности трещин не только помогает разрушить материал, но и стабилизирует дисиерсное состояние, так как формирующийся адсорб- [c.64]

    При слиянии ядер небольших взаимодействующих первичных ССЕ образуются более крупная вторичная ССЕ с большим значением радиуса ядра и меньшей толщиной сольватной оболочки. Эти изменения обусловливают повышения температур фазовых переходов (застывания и кипения) НДС при прочих равных условиях. При диспергировапии вторичных ССЕ образуются ССЕ с меньшим значением радиуса ядра и большим значением толщины сольватного слоя, что вызывает понижение температуры кипения и застывания НДС. Последний случай важен при практическом использовании НДС при низких температурах. [c.80]

    Обобщая случаи адсорбции и абсорбции (твердое тело — газ, раствор — газ, твердое тело — раствор), следует сказать, что во всех случаях формируются адсорбционно-сольватные слои различной толщины (от MOHO- до полислоя). В одних случаях адсорбционно-сольватные слои образуются с внешней стороны (пузырек, ассоциат, кристаллит), в других — с внутренней (поры, трещины). [c.81]

    Толщина адсорбционно-сольватного слоя h зависит от природы ядра, кривизны его поверхности и качества дисперсионной среды. В одной и той же дисперсионной среде при равных значениях размера ядра (r = onst) h растет в ряду газ жид- [c.81]

    Велико значение адсорбционно-сольватных слоев в НДС в нефтяной промышленности. Прежде всего толщина адсорбционно-сольватных слоев влияет на устойчивость НДС против расслоения, что важно при добыче, транспорте и переработке нефти. В зависимости от структуры и физико-химических сво ктв слоя продолжительность жизни ССЕ может колебаться от Т1.1-сячных долей секунды до бесконечности. Несомненно, продолж -тельность жизни ССЕ оказывает важное влияние на действие смазочных масел, пластичных смазок, профила тическнх средств, котельных топлив и др. Коэффициент охвата пласта реагентами также во многом зависит от размеров ССЕ и влияет на конечные результаты процесса. Между адсорбционно-сольватным слоем и дисперсионной средой идет непрерывный обмен соединениями. В период пребывания соединений в слое на них действует силовое (адсорбционное) поле ядра. Если силы адсорбционного слоя поля превышают прочность нефтяных соединений, то в слое протекают процессы, связанные с деструкцией молекул —химические превращения (межфазный катализ). После разрыва молекулы ее активные осколки не могут оставаться в слое и покидают его, уступая место новым молекулам, и процесс повторяется. [c.82]

    На ССЕ в дисперсионной среде действуют три силы силы межмолекулярного взаимодействия (Р) и отталкивания (Ж) молекул в ядре, а также сила межмолекулярного взаимодействия в дисперсионной среде (Смма). Соотношение этих сил определяет состояние СС1 . Если Р—Ж—С м в>0, то в системе происходит формирование ядра ССЕ при одновременном снижении толщины адсорбционно-сольватного слоя. При Р—Ж—Сммв<0 происходит обратная картина — уменьшение радиуса ядра г и увеличение толщины к. Постоянное значение г к к достигается при равенстве баланса сил в системе (рис. 18). Таким образом, регулированием баланса сил представляется возможным управлять размерами составных частей ССЕ (ядра и адсорбционно-сольватного слоя). При таком подходе к НДС возникает необходимость введения новых понятий растворяющая сила — РС, диспергирующая сила — ДС, агрегирующая сила — АС. Например, РС соответствует той величине внешнего воздействия, которая [c.89]

    На рис. 20 приведены динамика отношения hjr в зависимости от изменения баланса сил в нефтяной дисперсной системе. По мере увеличения С в относительно Р—Ж в нефтяной дисперсной системе изменяются размеры радиуса ядра и толщины адсорбщюнно-сольватного слоя экстремальным образом. На участке ОА отношение hjr имеет отрицательное значение, ио-скольку С ммв [c.91]


Смотреть страницы где упоминается термин Сольватный слой толщина: [c.62]    [c.452]    [c.62]    [c.62]    [c.199]    [c.22]    [c.14]    [c.62]    [c.64]    [c.76]    [c.76]    [c.79]   
Нефтяной углерод (1980) -- [ c.15 , c.60 ]

Нефтяной углерод (1980) -- [ c.15 , c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Толщина

Толщина слоя



© 2025 chem21.info Реклама на сайте