Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловое движение частиц

    Эти молекулы находятся в поле действия соседних молекул и связаны с ними водородной связью. Кроме того, они также взаимно влияют друг на друга. Тепловое движение частиц внутри комплекса и перемещение комплексов друг относительно друга могут ослабить в одной из молекул связь О—Н и разорвать ее. Разрыв сопровождается переходом протона к соседней молекуле за счет превращения водородной связи в ковалентную по донорно-акцепторному механизму  [c.120]


    Характеристикой интенсивности теплового движения частиц является средний сдвиг X, вычисляемый как средняя квадратичная величина из проекций пути частицы на какую-либо ось за определенный промежуток времени  [c.88]

    Как и у индивидуальных жидкостей, в жидких растворах тепловое движение частиц представляет собой колебания около временных положений равновесия в комплексах и скачкообразные перемещения из данного комплекса в соседний. Это скачкообразное перемещение частиц сближает жидкие и газовые растворы (физические смеси) и обусловливает диффузию, благодаря чему создается и поддерживается одинаковая концентрация растворенного вещества во сем объеме раствора. Обычно растворенное вещество распределя- [c.130]

    Решение. Для того чтобы происходило оседание частиц, необходимо преобладание скорости оседания над скоростью теплового движения примерно на порядок. Для оценки скорости теплового движения частиц рассчитывают средний сдвиг X за 1 с. По уравнению (У.2) [c.119]

    Химическое равновесие. Самопроизвольно, т. е. без затраты работы извне, каждая система может переходить только из менее устойчивого состояния в более устойчивое. При постоянных температуре и давлении такой переход всегда сопровождается уменьшением энергии Гиббса системы. Пределом протекания реакции,, т. е. условием равновесия, является равенство AG = 0. Согласно равенству (1,7) самопроизвольному течению реакции благоприятствуют большие отрицательные значения АН (т. е. значительное выделение энергии в ходе реакции) и большие положительные значения AS (т.е. возрастание энтропии). Для многих не слишком сложных реакций первый (энергетический) фактор отражает обычное повышение устойчивости системы при уменьшении запаса ее внутренней энергии, которое проявляется в тенденции к большей агрегации вещества, укрупнению частиц. Второй же фактор энтропийный отражает тенденцию к дезагрегации, к усилению всяческих процессов диссоциации на более простые частицы, происходящих под действием теплового движения частиц. В реакциях, которые приближают систему к состоянию равновесия, эти два фактора действуют в противоположных направлениях, и общее течение процесса определяется действием преобладающего фактора и сопровождается сближением значений величин АН и TAS до тех пор, пока не будет достигнуто равенство их между собой,. [c.25]


    Одна из характерных особенностей высоких температур состоит в том, что энергия теплового движения частиц становится в этих условиях соизмеримой с энергией химических связей в молекулах, с более высокой энергией возбуждения электронов и даже с энергией связи электронов в атомах и молекулах. В результате этого происходят процессы диссоциации, в которых многие радикалы и [c.170]

    Третий случай движения потока в трубке качественно отличается от первого слоистый (ламинарный) поток превратился в вихревой (турбулентный). В турбулентном потоке перемешивание и контакт молекул жидкости (газа) осуществляется гораздо быстрее, чем при простом перемешивании и контакте, осуществляемом с помощью теплового движения частиц. Поэтому при турбулентном движении [c.64]

    Введем тепловые (собственные) скорости (i=l, 2) молекул газа и частиц твердой фазы, которые характеризуют тепловое движение частиц относительно их упорядоченного движения, по следующей формуле  [c.165]

    Наиболее высокими температурами плавления обладают некоторые группы кристаллов с атомной решеткой. Сюда относятся многие карбиды, силициды, нитриды и бориды метал юв. Плавление кристаллов происходит при той температуре, при которой тепловое движение частиц, усиливающееся при нагревании, становится способным в той или другой степени преодолевать взаимное притяжение частиц. Здесь речь идет о колебательном движении частиц, образующих кристаллическую решетку, и о взаимном притяжении между этими частицами. [c.151]

    При температуре текучести, отвечающей переходу из высокоэластичного состояния в вязко-текучее , тепловое движение частиц (всегда усиливающееся с повыщением температуры) достигает величины, достаточной для разрыва относительно слабых связей между цепями. В результате при дальнейшем повышении [c.570]

    Природа высокоэластичного состояния хорошо характеризуется кинетической теорией упругости каучука. Согласно основным представлениям этой теории, при растягивании каучука происходит распрямление и сближение цепей, в то время как тепловое движение частиц, и в частности в.кг/мп вращение отдельных звеньев цепей, проти- [c.574]

    При помещении диэлектрика в постоянное электрическое поле частицы, составляющие диэлектрик, претерпевают поляризацию ( 23). Однако отдельные составляющие общей поляризации — электронная поляризация, атомная поляризация и ориентационная поляризация —происходят не с одинаковой скоростью. Электроны значительно быстрее реагируют на такие воздействия, так как обладают много меньшей массой, а для атомов и молекул в целом время релаксации ( 238) много больше и различно (оно зависит от вида процесса, от массы частиц и пр.). Напомним, что тепловое движение частиц противодействует определенной их [c.594]

    Как и в обычных растворах, способность растворяться определяется в первую очередь тепловым движением частиц ( 125). Возрастание энтропии, происходящее при растворении, является в термодинамическом отношении наиболее общим фактором, благоприятствующим процессу растворения. При этом основную роль играет не передвижение всей макромолекулы полимера, а движение отдельных звеньев цепи. В системах, в которых молекулы жидкости (растворителя) достаточно интенсивно взаимодействуют со звеньями макромолекул полимера, энергетический эффект этого взаимодействия также благоприятствует процессу растворения. Противодействует же ему главным образом необходимость затраты работы на раздвижение смежных звеньев макромолекул и на преодоление взаимного притяжения между молекулами растворителя. [c.599]

    Теплоемкость одних и тех же веществ в жидком и твердом состоянии практически одинакова. Это указывает на то, что характер теплового движения частиц при плавлении существенно не меняется это движение сводится к колебаниям частиц около некоторых положений равновесия [174]. Величина теплоты плавления зависит от состава, строения, формы и взаимного расположения структурных единиц в кристалле. Температура плавления кристаллического тела зависит от энергии его решетки, определяемой ее основными параметрами [175], [c.158]

    Электронная пй ляризация происходит под действием поля в любом атоме, ионе и молекуле. В отличие от ориентационной поляризации, сильно зависящей от температуры, атомная и электронная поляризация практически от температуры не зависят, так как эти виды поляризации не связаны с тепловым движением частиц. [c.52]

    Рассеяние света жидкостями вообще и растворами полимеров в частности обусловлено флуктуациями плотности вследствие теплового движения частиц. Флуктуации плотности раствора приводят к оптической неоднородности среды. Появляются статистические флуктуационные образования, объемы которых малы по сравнению с величиной длины волны падающего света, взятой в третьей степени (Х ). Такие образования обусловливают возникновение осмотических сил, стремящихся к уравниванию свойств системы в каждой точке раствора. Степень рассеяния монохроматического света раствором (мутность) -г связана с осмотическим давлением реального раствора следующим соотношением, известным как уравнение Дебая  [c.50]


    Изменение интенсивности теплового движения частиц и энергии межмолекулярного взаимодействия при повышении или понижении температуры вызывает изменение агрегатного состояния вещества. [c.123]

    С позиций теории строения вещества внутренняя энергия складывается из энергии теплового движения частиц, а также из всех видов внутримолекулярной и внутриатомной энергий. Поскольку сейчас еще отсутствуют исчерпывающие данные о строении молекул и атомов, эта теория также не позволяет определить абсолютное значение внутренней энергии. [c.36]

    Диффузией называют перераспределение вещества во времени и пространстве в какой-либо системе вследствие хаотического теплового движения частиц (броуновское движение). Броуновское движение частицы может быть охарактеризовано ее смещением за определенный промежуток времени. Согласно уравнению Смолуховского — Эйнштейна величина смещения равна [c.209]

    Диффузия. В дисперсных системах, так же как и в обычных, происходит тепловое движение частиц. В отличие от обычных растворов, в дисперсных системах это тепловое движение можно наблюдать в микроскоп картина его имеет вид хаотического движения частиц дисперсной фазы (рис. VI.3). Это явление впервые в 1827 г. было обнаружено английским ботаником Р. Броу-ком (1773—1858) и называется броуновским движением. Открытие броуновского движения имело огромное научное значение, поскольку послужило в дальнейшем практическим подтверждением справедливости кинетической теории агрегатного состояния вещества (М. Смолуховский (1877—1917, Польша), Эйнштейн]. [c.274]

    Подобно тому, как в результате теплового движения частиц концентрация раствора выравнивается, так и в результате броуновского движения частицы дисперсной фазы равномерно распределяются в объеме дисперсионной среды. Следовательно, если концентрация дисперсных частиц в различных областях объема дисперсной системы различна, то в системе они перемещаются из области с большим их содержанием в область с меньшим содержанием, т. е. происходит диффузия [ср. с растворами, разд. IV. 10]. Но в отличие от обычных растворов, диффузия в дисперсных системах протекает на 1—2 порядка медленнее, на что обратил внимание еще Грэм. [c.274]

    Эти молекулы находятся в поле действия соседних молекул и связаны с ними водородной связью. Кроме того, они также взаимно влияют друг на друга. Тепловое движение частиц внутри комплекса и перемещение комплексов друг относительно друга могут ослабить в одной из молекул связь О—Н и разорвать ее. Разрыв сопровождается [c.152]

    Второй метод определения размеров частиц—по седи-ментационно-диффузионному равновесию—непригоден для грубодисперсных систем (там практически отсутствует поступательное броуновское движение). Для коллоидных систем (размеры частиц 10"- — 10 м) этот метод в гравитационном поле практически не используется, так как здесь существенно преобладает тепловое движение частиц над седиментацией. [c.91]

    В отсутствие потока дезориентирующим фактором является вращательное тепловое движение частиц. [c.193]

    Если рассматривать в качестве гипотетической исходной модели твердого тела идеальный кристалл, находящийся при температуре абсолютного нуля, то все образующие его частицы будут занимать вполне определенные места, образуя правильную кристаллическую решетку. При повышении температуры, в результате теплового движения частиц, этот порядок нарушается. Часть частиц может покинуть свои места в узлах решетки (образуются вакантные узлы) и занять положение в междууз-лиях ( дефекты по Френкелю ). В некоторых случаях частица может покинуть положение в междуузлии и выйти на поверхность в этом случае в решетке образуются только вакантные места ( дефекты по Шоттки ). При данной температуре Г число п дефектов данного вида, находящихся в термодинамическом равновесии с кристаллической фазой, будет определяться выражением [c.339]

    Открытие в 1828 г. броуновского движения и обоснование его тепловой природы явилось первым экспериментальным подтверждением представлений молекулярно-кинетической теории. Изучение движения коллоидных частиц в поле зрения ультрамикроскопа, проведенное Ж- Перре-IIOM, Г. Сведбергом и др., работы А. Эйнштейна и М. Смолуховского позволили создать теории теплового движения частиц, дис к )узии и флуктуации, справедливые и для молекул. На основе этих работ оказалось возможным рассчитать нз экспериментальных данных важнейшую физическую константу—постоянную Авогадро, причем ее расчетное значение достаточно хорошо совпало с теоретическим. [c.88]

    Точечлые дефекты возникают по разным причинам, в том числе и в результате теплового движения частиц. Вакансии (а также дефекты внедрения) могут перемешаться по кристаллу — в пустоту попадает соседний атом, его место освобождается и т. д. Перемещением вакансий объясняется диффузия в твердых телах и ионная проводимость кристаллов солей и оксидов, которые становятся заметными при высоких температурах. [c.152]

    Газы при высоких температурах. Повышение температуры прежде всего вызывает усиление всех форм теплового движения частиц. При высоких температурах энергия теплового движения частиц становится соизмеримой с энергией химической связи в молекулах, с энергией возбуждения новых электронных уровней и с энергией связи электронов в атомах и в молекулах. Поэтому при высоких температурах в газе образуются возбужденные частицы и продукты диссоциации молекул в виде свободных атомов или валентно ненасыщенных групп (радикалов), которые могут находиться в равновесии с исходными молекулами. Являясь вместе с тем очень реакционно способными, эти частицы могут вступать во взаимодействие между собой или с другими частицами, образуя новые сочетания. То же относится к продуктам ионизации. Наряду с этим при высоких температурах в газах могут содержаться пары веп1еств, практически не испаряющихся при обычных температурах, а также частицы, образующиеся при термическом разложении этих веществ. В результате при высоких температурах в газах содержатся (при равновесном состоянии системы) новые, часто совершенно непривычные виды частиц, отвечающие валентным состояниям элементов, нехарактерным или неизвестным для них при обычных температурах. Эти частицы могут быть или более простыми, чем отвечающие им. частицы при обычных температурах (например, ОН, 510, 50), или, наоборот, более сложными (Сз, Сд, Ыаг, Сев, Мда, Ыа(0Н)С1, ВагОз, М05О15 и др.). [c.117]

    Теплоемкость жидкой воды примерно в 2 раза преросходит теплоемкость льда прн 0°С они равны соответственно 18,16 и 9,11 кал/град моль. Такого большого различия теплоемкостей не наблюдается для других веществ. Причина этого заключается в том, что при повышении температуры жидкой воды энергия затрачивается не только на обычное усиление теплового движения частиц, но также еще и на указанный выше разрыв связей между молекулами. Этим же объясняется и наблюдаемая наибольшая плотность воды при 4,0° С (точнее при 3,98 С). Это становится понятным, если учесть, что с повышением температуры уменьшается доля молекул, связанных между собой водородными свя-зями. - [c.167]

    Таким образом, течению реакции в прямом направлении благоприятствуют большие отрицательные значения ДЯ (т. е. значительное выделение энергии) и большие положительные значения Д5 (т. е. возрастание энтропии). Для многих не слишком сложных реакций первый фактор (энергетический) отражает обычное повышение устойчивости сисхемы при уменьшении запаса ее внутренней энергии, проявляющееся в тенденции к большей агрегации вещества, укрупнению частиц и пр., второй же фактор (энтропийный) отражает тенденцию к усилению всяческих процессов диссоциации на более простые частицы, п 5оисходящих под действием теплового движения частиц. [c.267]

    Кинетическая устойчивость связана с тем, что в коллоидных системах явлению седиментации противодействует тепловое движение частиц дисперсной фазы (броуновское движение, 213), обусловленное ударами молекул ди С1Герс ионной среды и малым размером самих частиц. Благодаря этому в коллоидных системах частицы сохраняются во взвещенном состоянии даже при значи тельном различии плотностей дисперсионной среды и частиц дис персной фазы. [c.509]

    Частицы коллоида обладают значительно большими размерами и значительно большей массой, чем молекулы растворенного вещества в истинном растворе. Вследствие этого скорости теплового движения частиц коллоида и вызываемого этим движением процесса диффузии соответственно во много раз меньше, чем в истинных растворах. Чем крупнее частицы и чем соответственно меньше скорость их движения, тем меньше и скорость их диффузии. Это относится не только к коллоидным, но и к истинным растворам, н при сопоставлении различных кристаллоидов в истинных растворах также легко установить обрать1ую зависимость между величиной молекулы и скоростью диффузии (табл. 57). [c.512]

    В зависимости от условий вза-имодействия выделенный (вторичный) электрон может обладать самой различной кинетической энергией от энергии теплового движения частиц при данной температуре до энергии, близкой к энергии воздействовавшей (первичной) частицы. На рис. 193 представлено распределение вторичных электронов по энергии при выделении их действием первичных электронов с энергией 1 Мэе. Эти данные показывают, что большинство выделяющихся электронов обладает энергией, не превышающей 6 эв. В результате одна первичная частица может образовать в среднем примерно от десяти до ста тысяч вторичных электронов. Поэтому химическое взаимодействие в большинстве случаев вызывается действием не непосредственно частицей большой энергии, а действием вторичных электронов (или каких-либо других вторичных частиц). [c.554]

    С повышением температуры усиливается тепловое движение частиц, в частности — колебательное движение всех звеньев цепи, а вследстие этого уменьшается степень кристалличности, и, начиная с некоторой температуры, кристалличность полностью исчезает. [c.577]

    Эйнштейн и Смолуховский, постулируя единство природы броуновского и молекулярно-кинетического движения, установили количественную связь между средним сдвигом частицы (называемым иногда амплитудой смещения) и коэффициентом диффузии О. Выведенное ими соотношение между этими величинами получило название закона Эйнштейна — Смо.духовского. При выводе этого соотношения авторы исходили нз следующего положения. Если броуновское движение является следствием теплового движения молекул среды, то можно говорить о тепловом движении частиц дисперсной фазы. Это означает, что дисперсная фаза, представляющая собой совокупность числа частиц, должна подчинят11Ся тем же статистическим законам молекулярно-кинетической теории, что и газы или растворы. Из этих законов был выбран закон диффузии, согласно которому хаотичность броуновского движения дол- [c.204]

    Из соотношений (IV. 56) и (IV. 57) следует, что характер поведения частиц в дисперсных системах определяется их размером и разностью плотностей частицы и среды. Чем больше эта разность, тем значительнее роль седиментации по отношению к тепловому движению частиц. Кроме того, с увеличением размера частиц быстро растет поток седиментации ( сед г" ) и снижается диффузионный поток ( днф1/г). Если же /диф ( сед, что характерно для [c.213]

    Различают три наиболее характерных вида потенциальных кривых, отвечаюш,их определенным состояниям устойчивости дисперсных систем (рис. VI. 16). Кривая 1 на рис. VI. 16 отвечает такому состоянию дисперсной системы, когда при любом расстоянии между частицами преобладает энергия притяжения над энер" гией отталкивания. Не меняет этого соотношения и тепловое движение частиц. При таком состоянии дисперсной системы наблюдается быстрая коагуляция с образованием агрегатов в системах о жидкой и газообразной дисперсными фазами происходит коалес-ценция. [c.331]

    А теперь смотрите. Если в (5,24) Я-параметр заменить величиной к Т (где Т - абсолютная температура, к - постоянная Больцмана), то Р а,М,Н) превратится в известное распределение Больцмана и будет дава1ъ ту долю частиц, для которых энергия их хаотического теплового движения превысит уровень а [Фейнман и др., 1967 Физический энциклопедический словарь, 1984]. Это еще раз убеждает нас в том, что Я-параметр служит мерой интенсивности хаотических движений взаимодействующих частиц в живьгс организмах примерно так же, как абсолютная температура среды служит мерой интенсивности хаотических тепловых движений частиц в объектах неживой природы [c.123]

    Температура очень сильно влияет на геле- и студнеобразо-вание. С повышением температуры структурообразованив 31атрудшг-ется, т.к. интенсивность теплового движения частиц увеличивается, что приводит к ослаблению связей медду ними и к понижению прочности и разрушению ранее образованных пространственных структур. В результате гель или студень могут перейти соответственно в золь или истинный раствор. [c.79]

    Основными факторами, определяющими структуру и реологические свойства дисперсной системы, являются концентрация частиц ф (объемная доля) и потенциал парного взаимодействия частиц. График зависимости энергии взаимодействия 21/ двух частиц от расстояния к между ними называют потенциальной кривой (рис. 93). Основными параметрами потенциальной кривой являются высота потенциального барьера А Утах, глубина потенциальной ямы Аб/щш (энергия связи частиц) и координата минимума энергии йо. В разбавленных агрегативно устойчивых дйсперсных системах (ДС/тах>А7, Аитш<.кТ, где Л7 —энергия теплового движения частиц) частицы сохраняют полную свободу взаимного перемещения или, как говорят, определенная структура [c.156]


Смотреть страницы где упоминается термин Тепловое движение частиц: [c.55]    [c.155]    [c.80]    [c.392]    [c.571]    [c.27]    [c.341]    [c.377]    [c.24]    [c.161]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.80 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Движение тепловое



© 2025 chem21.info Реклама на сайте