Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма, определение в меди и медных сплавах

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Для определения ЗЬ (0,01—0,15%) в анодной меди предложен полярографический метод с выделением 8Ь соосаждением с МпОа [1672]. В меди высокой чистоты ЗЬ определяют методом инверсионной вольтамперометрии [526]. Сурьму концентрируют соосаждением с Ге(ОН)д. При содержании ЗЬ 5-10 —1 10 погрешность составляет 17—20%. Для определения 10 —10 % ЗЬ в медных сплавах разработан метод вектор-полярографии [116]. [c.137]


    Сурьму в бронзах и других медных сплавах определяют броматометрическим титрованием без ее отделения с погрешностью --2% [959]. В оловянных бронзах и медных сплавах, содержащих олово, ЗЬ предварительно выделяют соосаждением с Ге(ОН)з [1244]. Для определения ЗЬ в ее сплавах с медью разработан метод амперометрического титрования раствором КЕгО без ее отделения. Продолжительность титрования 5—10 мин., погрешность 2—3% [1087]. Титрованием раствором КВгОд определяют ЗЬ в медных сплавах [1346]. Гравиметрические методы, основанные на электролитическом выделении ЗЬ при контролируемом потенциале, применены для ее определения в бронзах и латунях [849, 850, 852]. Коэффициент вариации 0,1—0,2%. [c.137]

    В бронзе, других сплавах и рудах иодометрическому определению могут мешать некоторые сопутствующие меди элементы. Медные сплавы содержат цинк, свинец и олово, а также малые количества железа и никеля, в то же время в медьсодержащих рудах часто встречаются железо, мышьяк и сурьма. [c.342]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]


    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]

    Определение 60—150 мг Sn в смеси со 150л<гСи в объеме 100лл возможно с погрешностью 0,5% или несколько меньше с тенденцией к отрицательным ошибкам. Когда количество олова превосходит количество меди, то погрешность определения олова составляет 0,2%. Необходимо выжидать 2—3 мин. для установления постоянного потенциала вблизи точки эквивалентности. В присутствии 150 мг Си погрешность определения небольших количеств олова сильно увеличивается так, при определении 15 мг Sn имеет место погрешность +4%. При таких количествах соли меди наблюдается вреленное образование осадка металлической меди в процессе титрования олова, перерасход раствора соли двухвалентного хрома вероятно связан с медленным окислением образовавшейся металлической меди четырехвалентным оловом. Все попытки повысить точность определения малых количеств олова в присутствии больших количеств меди оказались безуспешными. Определение олова в сплавах на основе меди титрованием раствором двухвалентного хрома возможно только при содержании более 30% Sn. Небольшие количества олова в медных сплавах можно определять после предварительного удаления меди (а также сурьмы и висмута, если они присутствуют) электролизом при контролируемом потенциале в солянокислой среде. После этого оставшееся в растворе олово титруют раствором соли двухвалентного хрома с ртутным индикаторным электродом [91] [c.44]


Смотреть страницы где упоминается термин Сурьма, определение в меди и медных сплавах: [c.157]    [c.137]    [c.307]    [c.195]    [c.220]    [c.199]   
Колориметрическое определение следов металлов (1949) -- [ c.470 ]




ПОИСК





Смотрите так же термины и статьи:

Медный

Медь и медные сплавы

Медь сплавы

Медь, определение

Сплавы медные

Сурьма сплавах



© 2024 chem21.info Реклама на сайте