Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы выделение электролитическое

    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]


    Особую область применения электролиза составляет электролитический анализ металлов. При одновременном присутствии в растворе катионов различных металлов последние могут быть выделены прн электролизе последовательно, в соответствии с их электродными потенциалами, так как минимальная разность потенциалов, необходимая для выделения различных металлов, неодинакова. Это дает возможность путем электролиза производить количественное определение содержания различных металлов в растворе. [c.448]

    Дальнейшее развитие химии и использование неводных растворителей привело к необходимости объяснить процессы, протекающие в этих растворителях. Например, хлорид аммония, ведущий себя как соль в водном растворе, при растворении в жидком аммиаке проявляет свойства кислоты, растворяя металлы с выделением водорода. Мочевина С0(КНг)2, растворяясь в безводной уксусной кислоте, проявляет свойства основания, в жидком аммиаке — свойства кислоты, а ее водные растворы нейтральны. Все эти факты нельзя было объяснить на основании теории электролитической диссоциации Аррениуса. В связи с этим определение кислот и оснований были пересмотрены. [c.75]

    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]


    Примеры электролитического выделения металлов Выделение меди на платиновом катоде [c.66]

    Устранение растворенных посторонних металлов производят электролитически — анодным окислением [254]. Этот способ весьма громоздок, и поэтому его редко применяют. Можно рекомендовать сильное встряхивание со сл або подкисленным азотной кислотой раствором Hg2(NOз)2 умеренной или высокой концентрации [255]. Наиболее распространенным способом является обработка 3—25%-ной азотной кислотой. Если ртуть не очень загрязнена, то в большинстве случаев используют 8%-ный раствор азотной кислоты, который при комнатной температуре реагирует медленно, без заметного выделения газов, с образованием легкорастворимой Hg2(NOз)2 При достаточно тонком дроблении ртути этот способ оказывается очень эффективным и при его использовании можно достаточно полно удалить, например, 2п [256]. [c.57]

    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]

    Для установления влияния природы щелочного металла на электролитическое выделение прометия были проведены опыты с цитратом лития. Оказалось, что в этом случае уже через 30 мин. электролиза 58% прометия переходит в ртутный катод, в то время как в присутствии ионов калия даже через 45 мин. электролиза выделяется только 8% прометия. Кроме того, при электролизе растворов, содержащих ионы лития, наблюдается выделение прометия в отсутствие самария, а также и при дополнительном введении цитрата лития. Результаты, представленные в табл. 40, показывают, что поведение церия аналогично поведению прометия. [c.173]

    Кривые, соответствующие бив, характерны для многих металлов. При электролитическом выделении таких металлов необходимо строго следить за плотностью тока. [c.146]

    Ионы меди, свинца, никеля цинка и шестивалентного хрома встречаются в сточных водах обогатительных фабрик, в стоках от гидрометаллургического получения металлов, их электролитической рафинировки и в сточных водах металлообработки. При этом металлы могут быть связаны в комплекс с цианом. Методы очистки сточных вод от металлов, связанных в цианистый комплекс, были рассмотрены ранее. Для очистки же сточных вод от ионов тяжелых металлов, не связанных в комплекс, наибольшее распространение получили два метода выделение ионов металла из раствора в осадок в виде нерастворимых солей и фильтрование через иониты. [c.208]

    При электролитическом осаждении металлов скорость реакции определяется вероятностью возникновения центров кристаллизации, которая тем больше, чем больше величина перенапряжения. Прямолинейный характер зависимости 1п I от 1/г] доказывает, что затруднения всего процесса обусловлены замедленностью стадии образования трехмерных зародышей. Такая зависимость была получена при выделении некоторых металлов на монокристаллах. После возникновения трехмерных зародышей рост металлической фазы происходит в условиях повторяющегося шага прикреплением новых структурных элементов в местах, энергетически наиболее выгодных, а скорость роста определяется энергией, необходимой для образования двумерного зародыша. Для этого случая характерна прямолинейность зависимости 1п I от 1/т]. [c.137]

    Исторический обзор. В 1789 г. Клапрот восстановил трех окись урана углем в условиях высокой температуры. Продукт восстановления имел металлический вид и поэтому был принят за свободный металл. Такое мнение было общепринятым до 1840 г., когда Пелиго доказал, что выделенный Клапротом продукт является низшим окислом урана (UOj). Металлический уран вначале получали восстановлением тетрахлорида урана металлическим калием, а затем в лабораторном масштабе применяли следующие методы получения а) восстановление окислов урана углем б) восстановление окислов урана алюминием, кальцием или магнием в) восстановление галогенидов урана щелочными или щелочноземельными металлами г) электролитическое восстановление галогенидов урана. За небольшим исключением, металл при этом получался в виде порошка. [c.108]


    К первой группе следует отнести металлы, выделение которых протекает с низким перенапряжением (с высокой скоростью разряда). К их числу относятся олово, кадмий, цинк, медь, серебро и некоторые другие. Характерным для этой группы является то, что пассивирование поверхности протекает медленно, выделение металла происходит в основном на активных участках электрода, и, как показали исследования, не сопровождается заметной химической поляризацией . Скорость разряда ионов пропорциональна той части поверхности электрода, которая свободна от посторонних частиц. Электролитическое осаждение этих металлов можно осуществить сравнительно легко из растворов их различных солей, поскольку процесс пассивирования протекает значительно мед- [c.13]

    Ответ выделение Со начинается прн напряжении 1,929 а и становится практически полным при напряжении 2,074 о выделение d начинается прн 2,059 а, т. е. прежде чем будет достигнуто полное выделение Со. Следовательно, электролитическое разделение этих металлов в указанных условиях невозможно. [c.457]

    Никель получают главным образом из медно-никелевых сульфидных руд. Выделение никеля из руд — сложный многостадийный процесс. В результате ряда пирометаллургических операций получают NiO, Свободный металл выделяют, восстанавливая NiO (чаще всего углем). Очищают никель электролитическим рафинированием в растворе сульфата. Попутно образуется анодный шлам, из которого путем сложной переработки выделяют присутствующие в нем в качестве примеси платиновые металлы, серебро и золото. [c.608]

    Значения постоянных а и й в формуле Тафеля для электролитического выделения водорода из кислых растворов на некоторых металлах при 298 К приведены ниже  [c.511]

    Таким образом, в случае присутствия кадмия изменение силы тока в зависимости от приложенного напряжения можно выразить кривой, приведенной на рис. 42. При малом напряжении, недостаточном для электролитического выделения кадмия на ртутном катоде, ток практически не идет. При увеличении напряжения до определенной величины начинается резкое увеличение силы тока. Это напряжение характерно для кадмия. Если в растворе присутствуют другие металлы, которые занимают при данных условиях другие места в ряду напряжений, то они будут восстанавливаться при других значениях приложенного напряжения. Поэтому полярографическая волна, т. е. скачкообразное увеличение силы тока, наблюдается при определенном, характерном для каждого металла напряжении тока, приложенного к электродам. Необходимо иметь в виду, что величина этого напряжения сильно зависит от присутствия в растворе других электролитов, а также от того, находится ли определяемый металл в виде хлорида, нитрата, аммиачного комплекса и т. п. Поэтому качественный полярографический анализ возможен только при строго определенных условиях среды. [c.212]

    Условия электролитического выделения металлов на катоде в порошкообразной форме [c.322]

    Другой метод переведения одного или нескольких компонентов в жидкую фазу, не смешивающуюся с водой, связан с электролитическим осаждением. При электролитическом осаждении на твердых электродах многие металлы (железо, хром и др.) выделяются медленно или неполностью. При осаждении на ртутном катоде, сопровождающемся растворением металлов в ртути, т. е. образованием амальгам, выделение большинства ме- [c.30]

    Значение напряжения при электролитическом выделении металлов [c.190]

    Количественный полярографический анализ основан на тех же процессах, которые рассмотрены выше для качественного анализа. Испытуемый раствор помещают в электролизер и соединяют электроды с источником тока. При достаточном напряжении начинается электролитическое выделение данного металла, например кадмия на ртутном катоде. Дальнейшее увеличение напряжения приводит к возрастанию силы тока, причем характер зависимости между этими двумя величинами обусловлен некоторыми рассматриваемыми ниже физическими условиями проведения электролиза. [c.212]

    Пусть, например, в качестве электролита в отдельных пробах взяты растворы сульфатов или нитратов серебра, меди, свинца и цинка, причем каждый раствор содержит 1 г-ион металла в 1 л. При электролизе таких растворов на платиновом аноде всегда идет один и тот же процесс — выделение кислорода. На платиновом катоде происходит восстанов/ ение ионов того или другого металла. Из названных четырех ионов ионы серебра восстанавливаются легче всего поэтому для электролиза раствора азотнокислого серебра достаточно приложить сравнительно небольшое напряжение — приблизительно 0,9 е. Ионы меди восстанавливаются труднее, чем ионы серебра, поэтому электролиз раствора сернокислой медн будет идти только при значительно большем напряжении, а именио — около 1,4 в. Ионы свинца и цинка восстанавливаются еще труднее, г для электролитического разложения растворов солей свинца и цинка необходимо приложить к электродам еще большее напряжение (не менее .,9 и 2,5 б соответственно). [c.191]

    Очень велики перенапряжения при выделении водорода и кислорода. Водород на катоде выделяется при потенциале гораздо более отрицательном, чем равновесный потенциал, отвечающий pH данного раствора. Это делает возможным при электролизе водных растворов разряд ионов тех металлов (N1, Сс1, Сг, 2п и др. вплоть до Мп), потенциалы которых окажутся в соответствующих условиях белее высокими, чем потенциал водородного электрода. Благодаря этому получили широкое распростра-ненпе методы электроосаждения металлов, например электролитическое хромирование, цинкование, кадмирование, никелирование, лужение. [c.259]

    Для электролитического выделения следов металлов был нрименен специальный прибор в котором из растворов объемом 250 мл, содержавших 5—10 г металла, выделяли следы другого металла. Выделенный металл определяли весовым или объемным путем, причем можно было определить [c.40]

    Весовыми формами для определения кадмия служат его неорганические соединения (окись, соли), внутрикомплексные соединения с органическими реагентами, тройные комплексы с неорганическими и органическими соединениями и выделенный электролитически металл. Распространенный ранее электрогравиметри-ческий метод, позволяющий определять до 500 мг С(1, для получения точных результатов требует длительного электролиза. Обычно электролитом служит раствор цианида. Ускоренные варианты этого метода менее надежны. Для массовой работы наиболее пригодны методы, основанные на выделении соединений кадмия различными неорганическими и, особенно, органическими осадителями. Обычно их используют для определения и-10 — и-10 мг С(1, реже [c.50]

    Кадмий может быть выделен электролитическим путем на ртутных, танталовых и платиновых катодах с различными электролитическими покрытиями и взвешен в виде металла. В качестве электролитов описаны молочная, муравьиная, серная, соляная, уксусная, фосфорная и щавелевая кислоты, аммиачные, щелочно-тартратные и цианидные растворы [619, стр. 197] сульфат аммония и этилендиамин, комплексон П1 в аммиачной среде сульфоса-лициловая кислота в слабо сернокислой среде и ацетилацетон в [c.59]

    Это название относится к анализу смеси выделенных металлов методом анодной вольтамперометрии. Согласно обычной методике, электролитическое выделение проводят в порции анализируемого раствора на маленьком ртутном электроде в течение 20—30 мин при потенциале, достаточном для выделения всех присутствующих металлов. Затем потенциал сканируют от потенциала электролиза в направлении более положительных величин, т. е. растворяют металлы, выделенные на предварительной стадии. Процесс растворения в условиях вольтамперомет-рпи длится 2—3 мин. [c.374]

    Предварительная обработка закаленных или облагорол<ен-ных сталей часто представляет большие трудности иЗ-за прочно приставшего масляного нагара и о-калины. Загрязнения такого рода должны быть удалены механическим путем (до операции покрытия) с помощью шлифования, струевой очистки и других методов, чтобы избежать длительного травления. Это важно прежде всего потому, что при перетравливании возникает насечка , которая легко может привести к ускоренной усталост материала. Для удаления окалины пригодны щелочные электролитические способы, при которых детали. включаются в качестве анодов или (при перемене направления тока) имеют преобладающую выдержку на аноде. Электролитическое обезжиривание также в основном следует вести анодно, чтобы избежать всякое поглощение водорода металлом (выделение кислорода в данном случае безвредно). Если травление неизбежно, то оно должно быть по возможности кратковременным и вестись в 10%-ной (по объему) соляной кислоте. Добавлять бензиновые ингибиторы не рекомендуется, так как они, не ухменьшая заметно водородной хрупкости, при известных обстоятельствах могут пр,ивести к недостаточной прочности сцепления гальванического покрытия. Рекомендуемая предварительная обработка включает следующие основные операции  [c.341]

    Указанные катионы могут, в большинстве случаев, определяться электролизом без применения диафрагмы. Полнота выделения при методе внутреннего электролиза может контролироваться, как и в методе обычного электролиза, дополнительным осаждением на свежей поверхности катода. Внутренний электролиз длится несколько дольше обычного, так как сила проходя-щ,его тока довольно мала. Этим методом можно осадить на катоде совместно два металла, которые затем разделяют химиче-скИхМ путем. Очень часто метод электролитического выделения металла совмещают с другими физико-химическими методами — фотоколориметрическим, полярографическим и т. п. При этом основная масса металла выделяется электролитическим путем, а примеси, остающиеся в растворе, определяются другими методами. [c.171]

    Все эти особенности строения кристаллических тел должны учитываться при рассмотрении процессов формирования и развития кристаллических осадков в условиях электролиза, в частности при пропессах катодного осаждения металлов. Близость процессов электролитического выделения металлов и образования кристаллов из газообразной, жидкой или твердой фаз подчеркивается в названии электрокрисгаллтищия, предложенном для их описания В. А. Кистяковским. [c.335]

    Обнаруженная М. А. Лошкаревь м адсорбционная поляризация проявляется в том, что при добавлении к раствору некоторых поверхностно-активных веществ (иапример, трибензиламина) изменяется скорость выделения металла на ртутном и на твердых катодах. Она становится, во-первых, меньше той, что наблюдалась до введения добавки, и, во-вторых, не зависящей в широкой области потенциалов от катодного потенциала. Однако после того как достигается определенный (обычно весьма отрицательный) потенциал, действие добавки прекращается. Скорость выделения начинает быстро расти, приближаясь к нормальному для этих условий зна-чеЕигю, отвечающему предельному диффузионному току. Сопоставление результатов иоляризационных измерений на ртутных катодах с электрокапиллярными кривыми и кривыми дифференциальной емкости (снятыми до и после введения добавки) показали, что потенциал, при котором прекращается дйствие добавки, совпадает с потенциалом ее десорбции (рис. 22.5). Действие добавки оказывается при этом специфическим. Одни и те же добавки или определенная их комбинация в разной степени тормозят разряд различных ионов на ртутном катоде. Явление адсорбционной поляризации используется для улучшения качества гальванических осадков при электролитическом получении сплавов. [c.462]

    Электролитическое выделение металла из раствора называется э л е к т р о э к с т р а к ц и е й. Руда или обогащенная руда — концентрат (см. 192)—подвергается обработке определенными реагентами, в результате которой металл переходит в раствор. После очистки от примесей раствор направляют на электролиз. Металл выделяется на катоде и в большпиствс случаев характеризуется высокой чистотой. Этим методом получают главным образом цинк, медь и кадмии. [c.300]

    Другое направление применения электролиза в металлургии — рафинирование металлов (получение их в чистом виде). В наибольшем масштабе этот процесс применяется для рафинирования меди. Электролитом служит uSOi и H2SO4. Листы сырой неочищенной (черновой) меди служат анодом. Процесс сводится к растворению анода и выделению меди на катоде электролит регенерируется и сохраняется в растворе. Содержавшиеся в сырой меди различные примеси переходят при этом в раствор и большей частью осаждаются в виде шлама. Выделяющаяся на катоде медь получается очень чистой (99,9%) и выпускается под названием рафинированной или электролитической меди. [c.447]

    Изучение перенапряжения при электролитическом выделении водорода представляет значительный интерес для теории и практики. Найденные при этом закономерности могут служить в качестве исходных данных для обобщений в области электрохимической кинетики. Величина водородного перенапряжения и зависимость его от различных факторов учитываются при создании технологических электрохимических процессов. Например, при электролизе водных растворов солей цинка на катоде могут протекать реакции разряда тнов Zn (fzn +,zn =—0,76 В) и ионов Н (в нейтральном растворе Фн+.Hj = —0,41 В). Вследствие высокого перенапряжения водорода на цинке потенциал его выделения сдвигается в сторону более отрицательных значений, б"лагодаря чему возможно катодное осаждение металла с выходом по току 90—95%. [c.513]

    ООО, охрупчивания не происходит. Контакт платины с танталом может быть осуществлен с помощью клепки, сварки или электролитическим осаждением. Металл, охрупченный при катодном выделении на нем водорода или вследствие наводорожи-вания при повышенных температурах, можно восстановить до обычного состояния только нагревом в вакууме. [c.383]

    Большое влияние на структуру осадков оказывает комплексообразование йонов. Как правило, при выделении на катоде металлов из растворов некоторых комплексных солей получаются мелкозернистые осадки, особенно при избытке комнлексообразующего лиганда. Характерным примером таких растворов, применяемых для электролитического покрытия металлами, являются растворы цианистых солей меди, серебра, золота, цинка, кадмия и др. Мелкозернистую структуру осадков, получаемых из этих растворов, обычно связывают с величиной катодной поляризации, которая в цианистых растворах при достаточном содержании свободного цианида значительно больше, чем в кислых растворах солей тех же металлов. [c.340]

    Значение химических условий при электровесовом анализе част 1чно отмечалось выше. Кислотность раствора, присутствие анионов азотной или серной кислоты, введение анионов, образующих с металлами комплексы,— все эти условия имеют очень большое значение при электролитическом выделении металлов. Обычно химические условия еще в больше) мере, чем физические, определяют полноту осаждения, чистоту осадка и его внешние качества. [c.197]

    Рассмотрим метод электролитического разделения меди и цинка. Медь и цинк занимают различные места в ряду напряжений (см. рис. 35). Для разделения таких металлов можно ограничиться определенными физическими условиями, а именно приложить к электродам напряжение, дэста-точное для количественного осаждения меди, но недостаточное для выделения цинка даже из концентрированных растворов его солей. [c.197]


Смотреть страницы где упоминается термин Металлы выделение электролитическое: [c.43]    [c.440]    [c.43]    [c.609]    [c.43]    [c.339]    [c.414]    [c.468]    [c.465]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диспергирующее действие ультразвука в момент электролитического выделения металло

Значение напряжения при электролитическом выделении металлов

Металлы выделение из руд

Металлы электролитическое

Напряжений при электролитическом выделении металлов

Примеры электролитического выделения металлов

Ртуть электролитическое выделение металлов

ТЕХНОЛОГИЯ ЭЛЕКТРОЛИТИЧЕСКОГО ВЫДЕЛЕНИЯ МЕТАЛЛОВ j Глава VIII. Гидроэлектрометаллургия

Электролитическое выделение включений из металлов и сплавов



© 2025 chem21.info Реклама на сайте