Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение алюминия химическими методами

    В качественном ато.мно-эмиссионмом спектральном анализе в отличие от химического ие требуется сложных операций по групповому разделению элементов. С помощью этого метода можно легко различить два металла с близкими химическими свойствами. Например, неодим и иразеодим при их совместном присутствии идентифицирую1ся с не меньшей простотой, чем алюминий и магний. Результаты анализа в любой момент могут быть проверены путем повторного изучения спектрограммы. Этот метод особенно ценен тогда, когда неизвестен общий химический состав анализируемого вещсства или необходимо обнаружить искомый элемент в пробе. Для выполнения анализа небольшая навеска или капля раствора, нанесенная на торец углеграфитового электрода, возбуждаются электрической дугой, а спектр снимается на фотопластинку или изучается визуально. Присутствие или отсутствие элемента в пробе безошибочно может быть установлено по двум-трем характерным спектральным линиям. Этим методом можно быстро определить один или несколько металлов. Спектральные линии благо-ролных газов, галогенов, серы и некоторых редких тяжелых металлов малочувствительны или для их определения требуются специальные приемы и соответствующая аппаратура, что делает выполнение анализа более сложным, чем химическими методами. [c.665]


    Каталитическая активность хлорированного окснда алюминия. Хлорированный т -оксид алюминия способен изомеризовать н-бутан в отсутствие платины и в отсутствие водорода (табл. 2.13). Замена водорода гелием в качестве газа-носителя в реакции изомеризации не изменила начальной изомеризующей активности катализатора. Наиболее глубоко изомеризация н-бутана протекала в отсутствие газа-носителя. Присутствие платины в катализаторе несколько снижает его активность в реакции изомеризации н-бутана. Исследования поверхности у- и т -оксида алюминия до и после хлорирования четыреххлористым углеродом различными физико-химическими методами позволили прийти к ряду заключений, которые в свою очередь привели к определенным выводам о природе активности хлорированного т -оксида алюминия. [c.72]

    За последние 10—15 лет в аналитической химии алюминия достигнуты большие успехи. Наиболее существенным достижением явилось использование для определения алюминия нового метода объемного анализа — комплексометрии. Для фотометрического определения алюминия предложены новые высокочувствительные органические реагенты, разработаны разнообразные методы отделения алюминия от мешающих элементов. Число всех опубликованных работ по определению алюминия в настоящее время составляет несколько тысяч. В то же время имеется только одна работа, систематизировавшая все достигнутое в аналитической химии алюминия. Это — монография Фишера и других, составляющая часть многотомного издания Фрезениуса и Яндера [733]. Эта монография, вышедшая в 1942 г., к сожалению, в значительной степени устарела. Монографии Р. Пршибила Комплексоны в химическом анализе [347] и Е. Сендэла Колориметрические методы определения следов металлов [360] содержат описание комплексометрических и фотометрических методов определения алюминия, но в них не попали многие очень важные методы, опубликованные за последние 8—10 лет. [c.5]

    Распределительная хроматография на бумаге обладает большей разрешающей способностью, чем другие виды хроматографии. Особая ценность метода заключается в том, что он с успехом применим для разделения очень близких по химическим свойствам элементов, определение которых при совместном присутствии обычными химическими методами затруднено. На рис. 50 приведены хроматограммы, полученные для щелочных металлов, благородных металлов и меди, а также алюминия, бериллия, цинка и циркония. [c.178]


    Спектрофотометрическое определение алюминия Определение функциональных групп в полимерах химическими методами Определение гидроксильных (гидроксидных) групп. ... Определение гидроксильных групп ацетилированием Определение гидроксильных групп методом газовой хроматогра [c.4]

    Используя опубликованную литературу и свой опыт работы, мы поставили целью систематизировать все известные методы определения алюминия. В монографии рассматриваются химические, физико-химические и физические методы определения алюминия. Наибольшее внимание уделено методам, позволяющим определять [c.5]

    Образующиеся при электролизе вещества либо выделяются на электродах, либо вступают в химическое взаимодействие с растворителем или растворенным веществом. Электролиз растворов и рас-сплавов широко применяется в промышленности для получения щелочей, солей, различных органических веществ, магния, алюминия, для нанесения гальванических покрытий и т. д. Таким путем удается получить более чистые (по сравнению с химическими методами синтеза) и сравнительно дешевые вещества. Метод электролиза применяется в аналитической практике для количественного определения различных веществ в растворах. [c.266]

    Физические методы борьбы с цветением заключаются в искусственном замутнении, воды глиной, аэрации, применении всасывающих устройств для удаления водорослей. Для выделения водорослей в системах технического водоснабжения, в небольших водоемах и резервуарах возможно применение коагуляции сульфатом алюминия. Химические методы борьбы с цветением заключаются в обработке водоемов пестицидами, сульфатом меди. Токсичность этих соединений для других водных организмов ограничивает использование их в широких масштабах. Перспективным методом борьбы с цветением водоемов является биологический, основанный на использовании микроорганизмов-антагонистов водорослей. Выделено 25 антагонистов синезеленых водорослей. В днепровских водохранилищах выделены микроорганизмы (альгофаги), лизнрующие сине-зеленые водоросли в течение 2—6 сут. Определенную роль играет прогнозирование времени и интенсивности цветения. [c.251]

    Для фазового анализа широко применяются химические методы. При этом используется обычно различная (избирательная) растворимость отдельных фазовых компонентов материала. Так, например, в фазовом анализе глин определяют содержание глинистого вещества (водного силиката алюминия и железа), полевого шпата (алюмосиликатов ш,елочных или щелочноземельных металлов) и кварца. Сначала глину обрабатывают в определенных условиях соляной или серной кислотой в результате глинистое вещество разлагается, а кварц и полевой шпат остаются без изменения. Отфильтровав раствор солей алюминия и железа, выделившуюся при разложении силиката аморфную кремневую кислоту переводят в раствор, нагревая с раствором соды. Взвесив нерастворимый остаток, можно по потере в весе вычислить количество глинистого вещества. После этого остаток обрабатывают плавиковой или борофтористоводородной кислотой, которые легко разлагают полевой шпат и очень медленно действуют на кварц. [c.14]

    Метод нейтронного активационного анализа применен для определения ультрамалых содержаний ртути в ряде металлов, рафинированных зонной плавкой и другими физико-химическими методами алюминии [110, 622, 1204], меди [173, 601], селене [1107], теллуре [120], кремнии [1018], галлии [135], цирконии [689, 824], висмуте [858], свинце [161], олове [862], германии [270], а также сере [406]. [c.157]

    Прямой химический метод определения алюминия в титане и его сплавах пока не разработан. Методика анализа зависит от способа отделения титана либо его осаждают в виде гидроокиси титана из щелочных растворов , либо в виде купфероната титана из кислых растворов . Методы разделения, включающие осаждение основного металла, не всегда приемлемы, поскольку другие ионы соосаждаются или сорбируются осадком. Однако в рекомендуемых авторами методах потери алюминия незначительны в том интервале концентраций, для которого эти методы разработаны. [c.17]

    Химические методы кислородный при определении водорода раскисления металла жидким алюминием с последующим определением количества А Оз вакуумной дистилляции ртутной экстракции для отделения металла от избыточных фаз, содержащих газовые примеси и т. д. при определении кислорода метод Кьельдаля и его разновидности при определении азота и др. — предназначены для определения лишь одной газовой примеси. [c.931]

    Вольфрам и молибден. Общие требования к методам химического и спектрального анализа Ниобий. Спектральный метод определения вольфрама и молибдена Ниобий. Спектральный метод определения тантала Тантал и его окись. Спектральный метод определения алюминия, ванадия, железа, кальция, кремния, магния марганца, меди, никеля, ниобия, олова, титана, хрома и циркония [c.821]


    Подробные исследования процесса озоления нефтепродуктов имеются в работах [37, 63]. Для определения содержания металлов в их органических солях химическим методом пользуются одним из следующих способов. Пробу озоляют прямым или кислотным методом, золу растворяют и раствор анализируют. По другому способу пробу сжигают и по массе окисла подсчитывают содержание металла. При кислотном озолении расчет ведут по массе полученного сульфата. Иногда соединения восстанавливают водородом до металла и определяют его массу. Для получения окислов алюминия, бария, ванадия, кальция, меди, железа, свинца, магния, марганца, серебра, натрия, никеля, калия, стронция и цинка пробу заворачивают в фильтровальную бумагу и прокаливают при 700—1100°С [64]. [c.18]

    Изучена также возможность определения кислорода в алюминии прп облучении протонами с энергией 20 Мэе [150]. Использовалась реакция О (р, п) F . После облучения фтор выделяли химическими методами. [c.108]

    Анализ сплавов магния производили по аналогичным методикам. Манселл и др. [328] сочли необходимым добавлять при определении кальция I % лантана в эталонные и исследуемые растворы, поскольку в большинстве магнийсодержащих сплавов присутствует алюминий. Эти исследователи получили хорошее совпадение результатов анализа атомно-абсорбционным и химическим методами при определении Са, Си, Мп и Zn в различных сплавах магния. [c.179]

    Николаев успешно применял метод для определения алюминия [47] и цинка [48] в металлургических образцах. Процедура подготовки проб к анализу состояла в растворении навески образца 1—5 мг в химически чистой кислоте и разбавлении раствора би-дистиллированной водой. Градуировка осуществлялась по чистым растворам этих элементов. Результаты определения алюминия [c.278]

    СТ СЭВ 4118—83 Защита от коррозии. Покрытия анод-но-окисные на алюминии и его сплавах. Химический метод определения сплошности  [c.642]

    Беркович М. Т., Сирина А. М., Лагунов Н. Л. Физико-химические методы определения алюминия и железа в хромитах и шихте. Сообщ. 2. Потенциометрическое определение алюминия и железа (III) с помощью комплексона III.— В кн. Методы анализа по контролю производства основной химической промышленности. М.— Л., Химия , 1964, 32—37 (Ураль- [c.161]

    НИЯ КИСЛОТНОСТИ окиси алюминия были использованы различные физические и химические методы. Титрование бутиламином (33], диоксаном [34] и водным раствором едкого кали [35], а также хемосорбция газообразного аммиака [35], триметиламина [36] или пиридина [37] дали кажущиеся величины кислотности, близкие к величинам, полученным для алюмосиликата. С другой стороны, индикаторный метод определения кислотности твердых тел, разработанный Уоллингом [38], не показал присутствия даже слабокислотных центров [39, 40]. [c.60]

    В отличие от обычных алюминиевых сплавов, где окись является вредной примесью, в материале САП наличие больших количеств окиси до 15—20%) значительно улучшает термические и механические характеристики металла. Поэтому для оценки качества металла чрезвычайно важно быстрое определение окиси в исходном порошке и готовом материале. Микроскопическое определение толшины окисной пленки на зернах алюминиевой пудры, из которой прессуется материал, очень затруднительно. Под микроскопом заметны только значительные крупнозернистые скопления окиси в виде не отражающих свет темных пятен. В рентгеновских лучах определить окись алюминия нельзя, так как она ведет себя аналогично алюминию. Поэтому единственно возможными методами определения окиси являются химические методы. [c.174]

    Ферросиликоцирконий. Методы определения циркония Ферросиликоцирконий. Методы определения фосфора Ферросиликоцрфконий. Метод определения кремния Ферросиликоцирконий. Метод определения меди Ферросиликоцирконий. Метод определения алюминия Ферросплавы, хром и марганец металлические. Общие требования к отбору и подготовке проб для химического анализа Ферровольфрам. Технические требования и условия поставки [c.568]

    С. Мухина, Е. И. Никитина, Л. М. Буданова, Р. С. Володарская, Л. Я. Поляк, А. А. Тихонова. Методы анализа металлов и сплавов. Обороигиз, 1959, (528 стр,), 15 книге рассмотрены методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов и н1лаков, а также сплавов на основе алюминия, магния и меди. Приведены методики определения большого количества легирующих элементов в этих материалах. Вводная глава содержит характеристику физико-химических методов анализа. [c.491]

    К физическим методам относятся получение дистиллятных фракций методами изотермическсй отпарки или периодической перегонки и выделение сероводорода при определении стабильности приготовление концентратов методом адсорбции на силикагеле и окиси алюминия микроперегонка. Уснешно применялись также термо диффузионные методы. Химические методы основаны на выделении пяти классов сернистых соединений, содержащихся в нефтях, при помощи специальных характерных реакций. [c.264]

    Схему выделения, разделения и исследования нефтяных кислот разработал Зайферт [194], Кислые соединения экстрагирую кз нефти спиртовым раствором едкого натра. Двухступенчатой ионообменной хроматографией их разделяют на четыре фракции фенолы, кислоты и две смешанные фракции, содержащие наряду с кислотами их производные и фенолы. Чистые карбоновые кислоты восстанавливают с помощью гидрида лития -алюминия в углеводород. Продукт восстановления разделяют жидкостной хроматографией иа нейтральном оксиде алюминия на ряд фракций (рис. 45), одну из которых, содержащую моно- и биароматические соединения, разделяют на кислом оксиде алюминия. Выделе1шые при разделении фракции анализируют различными методами с целью определения их химического состава. На основании полученных результатов можно судить о химическом строении кислот, содержащихся в нефти. [c.128]

    В монографии рассматриваются химические свойства алюмыиия, свойства важнейших соедииеиий его. имеющих эиачеиие в аналитической химии, методы обиаружеиия алюми> ния, способы отделения его от мешающих элементов, химические, физико-химические в физические методы определения алюминия. [c.267]

    Определение примесей в алюминии производят непосредственно из металла с подставным угольным электродом. Эталонами служат проанализированные химическим методом образцы со спектральной корректн-оовкой в процессе работы. [c.300]

    Зизин и Иванова [155] использовали метод линейной жидкостно-адсорбционной хроматографии для определения группового химического состава нефтяных фракций. В качестве сорбента использовщхи оксид алюминия, емкость линейного участка изотермы сорбции которого была увеличена предварительной сорбцией на его поверхности воды. Элюентом служил изооктан, а детектором - интерферометр ИТР-2, одна из кювет которого была сделана, проточной. Эта система позволяла разделять нефтепродукты на насыщенные, моно- и бициклические ароматические углеводороды. Подобный метод [156] использовали и для определения группового состава продуктов газового конденсата с т. кип. 70-210 °С. Разделение проводили на модифицированной водой Al Oj с детектором по диэлектрической проницаемости. В качестве подвижной фазы использовали -гексан. [c.111]

    Описаны химические методы определения элементов в водных растворах [0-61]. Приведены данные о чувствительности определения в водных растворах 23 элементов [0-49]. Предложен спектрометрический метод определения микропримесей алюминия, меди, железа, цинка, титана и др. в сточных водах [84—86 0-13]. [c.17]

    Известен физико-химический метод водоизоляции, основанный на способности системы соль алюминия — карбамид — вода генерировать неорганический гель и СО2. В методе реализЪван известный в аналитической химии принцип возникающих реагентов (гомогенного осаждения). В этом случае в пласт закачивается гомогенный водный раствор, содержащий гелеобразующую систему. При температуре выше 70 °С в нем происходдг гидролиз карбамида. При этом образующиеся продукты гидролиза вызывают сдвиг протолитического равновесия ионов алюминия, в результате через определенное время при pH = 3,8 —4,2 по механизму кооперативного явления происходит образование геля гидроксида алюминия во всем объеме раствора, приводящее к снижению проницаемости водоносного пласта. [c.532]

    При определении кальция в магниевых сплавах в количестве сотых долей процента химическими методами встречаются затруднения одно из них — необходимость количественного отделения кальция от основы и ряда компонентов сплава. Более перспективен для этой цели метод фотометрии пламени. Спектр кальция в пламени смеси ацетилена с воздухом состоит из ряда атомных линий 393,4 396,8 422,7 ммк. Последняя линия наиболее интенсивна и чаще других применяется для анализа, равно как и молекулярные полосы (СаОН) с максимумами при 554 и 622 ммк. Интенсивность линии 422,7 ммк в пламени ацетилен — воздух пропорциональна концентрации кальция в растворах в интервале О—390 мкг/мл кальция [526]. Извертво, что соли железа, меди, цинка [527], а также хрома и бария [526, 528] понижают интенсивность излучений кальция. Этот эффект [529] более резко выражен в присутствии солей алюминия, титана, а также ванадия, урана [512] и других. Это усложняет определение кальция в сплавах на основе магния, содержащих значительные количества алюминия. Влияние алюминия устраняют, осаждая его аммиаком [530], бензоатом аммония или маскируя оксихинолином [531]. Следует отметить, что последний метод оказывается непригодным для сплавов с 7—10% А1. Определение может быть выполнено при помощи спектрофотометра пламени по линии 422,7 ммк или по полосам гидроокиси кальция, а также на фотометрах Zeiss, ППФУНИИЗ, или ФПФ-58 по полосе гидроокиси кальция с максимумом 622 ммк. [c.319]

    Для определения абсолютной влажности применяют химические и физические методы. Качественно пары воды могут быть определены по изменению окраски хлористого кобальта, нанесенного на окись алюминия или силикагель. Кристаллогидраты хлористого кобальта изменяют свою окраску от яркоголубой до розовой в зависимости от числа молекул кристаллизационной воды [33]. Количественный химический метод определения влаги воздуха заключается в определении привеса при пропускании определенного объема воздуха через взвешенные на аналитических весах трубки с фосфорным ангидридом или хлористым кальцием. Определение проводят в О-образных трубках диаметром 10 мм и высотой 100 мм, закрытых кранами. Исследуемый воздух в количестве до 100 л пропускают со скоростью 10 л/час через две осушительные трубки и газовые часы. Во время опре- [c.294]

    К анализу различных кремнийсодержащих соединений появляется все больший интерес. В настоящей работе описан метод химико-спектрального определения микропримесей алюминия, железа, кальция, магния, марганца, меди, никеля, олова, свинца, серебра, титана и хрома в этиловом эфире ортокремневой кислоты. Л1етод основан на спектральном анализе концентратов примесей, полученных после физико-химического обогащения испытуемой пробы на коллекторе (угольном порошке). В этом химико-спектральном определении физико-химическое обогащение разделяется на два этапа  [c.73]

    Проверку методов проводили, пользуясь металлами особой чистоты либо известными точными методами анализа. В процессе разработки был применен ряд новых индикаторов синтезированный в Институте химических реактивов сульфарсазен [18. 19] для определения свинца, цинка, никеля и кадмия [19] и кальцион ИРЕА [20—23] для определения кальция, а также описанные в литературе индикаторы пирокатехиновый фиолетовый [24] для определения висмута, ксиленоловый оранжевый [25] для определения свинца и кобальта, хромазурол С [26, 10, 11] для определения алюминия, метилтимоловый синий [2, 27] для определения стронция и флуорексон [28] для определения бария и меди. В качестве индикатора при определении железа применили сульфосалициловую кислоту [29]. [c.274]

    Д а в ы д о в А. Л., Девекки В. С. Количественный флуоресцентный метод определения алюминия. Бюллетень Всесоюзного химического общества им. Менделеева № 2, 134. (1941) Зав. лаб. 10, 134 (1941). [c.537]

    Кристаллизация и срастание. Если гидроокись способна кристаллизо.ваться, то скорость и глубица кристаллизации могут оказать существенное влияние иа формирование поверхности ксерогеля. Наиболее четко проявляется это влияние в случае медленно кристаллизующихся и склонных к фазовым превращениям гидроокисей, для которых возможно измерение скоростей всех стадий. Типичные представители этого типа — гидроокиси алюминия, железа, хрома, меди и др. Многими авторами показано, что в большинстве случаев свеже-осажденные гидроокиси этого, типа не имеют определен-, ного химического состава, содержат большие или меи.ь-шие количества сверхстехиометрической воды и продуктов неполного гидролиза. Различными методами установлено, что нестаревшие гидроокиси состоят из сравнительно крупных бесформенных агрегатов более мелких частиц. При старении свежего осадка в воде или маточном растворе наряду с изменениями химического состава (гидролизом и дегидратацией) происходит кристаллизация. При этом крупные агрегаты распадаются, [c.97]


Смотреть страницы где упоминается термин Определение алюминия химическими методами: [c.170]    [c.31]    [c.155]    [c.57]    [c.194]    [c.219]    [c.226]    [c.128]    [c.114]   
Аналитическая химия алюминия (1971) -- [ c.0 ]

Аналитическая химия алюминия (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вода определение химическими методами с применением амида этилата алюминия

Определение алюминия химическими

Химические и физико-химические методы определения алюминия



© 2025 chem21.info Реклама на сайте