Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы медные, определение кремния

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]


    ОПРЕДЕЛЕНИЕ КРЕМНИЯ В ЖЕЛЕЗНЫХ, ФЕРРОМАГНИТНЫХ, НИКЕЛЕВЫХ И МЕДНЫХ СПЛАВАХ [16] [c.46]

    Метод применяли для определения кремния в меди и сплавах на медной основе, содержащих нерастворимые силициды. Для растворения силицидов к азотной кислоте добавляют немного фтористоводородной кислоты избыток последней устраняют добавлением борной кислоты. [c.44]

    Экстракция желтой фосфорномолибденовой кислоты с последующим ее восстановлением применена для определения фосфора в олове высокой чистоты [107], окиси свинца [108], алюминии, медных сплавах, белых металлах и сталях [109], сплавах алюминия и кремния [110], плавиковом шпате [111], воздухе [112] и других материалах [113—115]. [c.108]

    При определении кремния в меди и сплавах на медной основе лучшие результаты получаются с предварительным электролитическим отделением меди. Однако описан ряд методик, в которых предлагают медь связывать тиомочевиной или применять экстракцию восстановленной кремнемолибденовой гетерополикислоты. [c.120]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Мешают определению (без экстракции комплексной кислоты) следующие ионы кремний в больших концентрациях, железо(III) в присутствии хлорида или сульфата, восстановители, хром (VI), мышьяк(V) и цитрат. Висмут(III), торий(IV), хлорид н фторид влияют на развитие окраски. Кремний можно удалить при кипячении раствора с концентрированной H IO4. Железо(III) можно связать в комплекс с фторидом, избыток которого удаляют введением борной кислоты. Борную кислоту можно использовать и для связывания фторидов, присутствующих в исходном анализируемом растворе. С использованием экстракции комплексной гетерополикислоты был разработан метод определения фосфора. Метод был применен для анализа практически всех фосфорсодержащих материалов стали [139, 140J, железных руд [141], алюминиевых, медных и никелевых сплавов с белыми металлами [142], воды [143, 144] и удобрений [145—147]. Работы по анализу удобрений [145—147] посвящены автоматизации очень точного метода определения фосфора с применением автоматических анализаторов. В анализаторы был заложен метод прямого измерения светопоглощения, а не дифференциальный вариант, который обычно используют для повышения точности определения. Полученные результаты позволяют заключить, что абсолютная ошибка измерения оптической плотности в интервале О—1,2 единицы не выше ошибки самого измерительного прибора (0,001 единицы поглощения). Следует отметить, что описанный метод по точности превосходит метод с применением молибдофосфата хинолина и, кро.ме того, обладает еще одним преимуществом — простотой выполнения определения. В биохимии метод применяли для определения фосфата в присутствии неустойчивых органических фосфатов [148] и неорганического фосфата в аденозинтрифосфате [149]. Метод был использован для анализа фосфатных горных пород [150]. В органическом микроанализе метод применяют после сожжения органических соединений в колбе с кислородом [151, 131]. [c.461]

    Описанный далее метод неприменим для сплавов, при растворении которых кремний не переходит полностью в раствор, но его можно успешно применять в случае почти всех железных, ферромагнитных, никелевых и медных сплавов. Кремний в этих сплавах находится в легко растворимой форме, и получаются хорошие результаты. Метод состоит в растворении навески сплава в смеси соляной и азотной кислот, удалении азотной кислоты нагреванием с муравьиной кислотой, удалении всех мешаюших металлов хлороформенной экстракцией карбаминатов и, наконец, в определении кремния обычным фотометрическим методом по образованию молибденовой сини в основном по методу Минстера [17, 18]. Продолжительность определения около [c.46]

    Условия спектрографического анализа магниевых сплавов в общем не отличаются от описанных для определения состава алюминиевых сплавов ([56, 278] и др.). Отличия состоят главным образом в том, что в качестве подставного электрода используют пруток из чистого магния или спектрально чистого угля, а также парные электроды из анализируемого сплава (заточка на полусферу), время предварительного обыскривания составляет 30 сек (при определении железа и кремния 60 сек) и используются другие аналитичеокие пары линий. При определении кремния иногда рекомендуется медный -подставной электрод. [c.170]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]

    Позднее Миленц [357, 358] разработал методику анализа сталей и цветных сплавов для металлспектроскопа Фюсса. Эта методика в общем сходна с применявшейся в Советском Союзе, главнейшие спектроскопические признаки совпадают и различаются лишь в тех случаях, когда результаты определений сильно зависят от условий возбуждения спектра, например, для определения кремния и никеля. Для анализа сталей применен электрод медный, для анализа цветных сплавов — железный. Спектроскопические признаки установлены только по равенству интенсивностей спектральных линий, что потребовало привлечения большого числа линий. Данные Миленца и Фишера приводятся в излагаемых ниже методиках. [c.126]

    На шлифах кремнистой латуни ЛК-80-ЗЛ селективной эрозии подвергается эвтектоид а + т, в железо-марганцовнстой латуни и двойном медно-железном сплаве — выборочно окисляющаяся железистая фаза, в оло-вянистых бронзах — эвтектоида + б и эвтектика а + 6 + СизР, в сером чугуне — участки феррита, прилегающие к графиту. Выборочностью разрушения отдельных составляющих сплава объясняется влияние кремния и олова при определении цинка и свинца и влияние олова при определении кремния в кремнистой латуни, влияние олова и фосфора при определении цинка в оловянистой бронзе, а также влияние структуры при определении железа в железо-марганцовистой латуни и двойном медно-железном сплаве и при определении кремния в чугуне. [c.63]


    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Данные рис.1 справедливы для торцовых уплотнений с разгруженной парой трения при эксплуатации их о частотой вращения ЗООС об/мин. Длн других случаев значения А Т, определенные по рис.х, необходимо скорректировать пропорционально рабочей частоте вращения. Представленные на рис.1 значения 47 относятся к уплотнениям о кольцами пар трения относительно невысокой теплопроводности, изготовленными из нержавеющих сталей. Такие пары трения фирмой "Флексибокс" отнесены к типу А. Значения А 7 мо1ут быть уменьшены при использовании пар трения с более высокой теплопроводностью. Так, для пар трения типа В, в которых применяются карбвды кремния, карбиды вольфрама и утлеграфиты, значения АТ определенные по рис.1, необходимо уменьшить в 1,33 раза. Для пар трения типа С, имеющих наиболее высокую теплопроводность и изготавливаемых на основе медных сплавов, значения А Т должны быть уменьшены в 2,6 раза по сравнению о А 7 для пар типа А. [c.64]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Для определения 0,01—1,2% фосфора в сплавах на медной основе удобен метод определения по образованию фосфорномолибденованадиевой кислоты при условии, что содержание кремния и мышьяка не превышает 1% [1, 21]. [c.31]


Смотреть страницы где упоминается термин Сплавы медные, определение кремния: [c.132]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.44 , c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Медный

Определение кремния в железных, ферромагнитных, никелевых и медных сплавах

Сплавы кремния

Сплавы медные



© 2025 chem21.info Реклама на сайте