Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменная хроматография аминокислот элюирования

    В основу работы анализатора положена ионообменная хроматография на полимере полистирольной природы, содержащем сульфогруппы (точнее натриевую соль сульфобензокислоты). Смесь АК наносят в буфере pH 3,3, в результате чего с полимером первыми будут связаны основные АК (арг, ЛИЗ, гис), затем - менее основные и нейтральные аминокислоты и последними будут связываться кислые АК (для чего постепенно сдвигают pH буфера до 6,5-8,0). При элюировании смеси аминокислот буфером, имеющим pH 6,5-8, первыми выходят наименее прочно связанные кислые АК (глу, асп), затем - менее кислые и нейтральные АК и последними элюируются основные аминокислоты. Определение АК в анализаторе основано на нингидри- [c.18]


    В последнее время появилась возможность определять аминокислотный состав белков с помощью автоматических аминокислотных анализаторов. Когда в 1948 г. Мур и Стейн [551 в дополнение к классическим методам органической химии, а также манометрическому и бактериологическому анализу ввели ионообменную хроматографию, наступил поворотный момент в развитии химии аминокислот. В основу работы созданных сотрудниками Рокфеллеровского института современных автоматических аминокислотных анализаторов была положена ионообменная хроматография. Принцип работы этих приборов заключается в следующем. Исследуемый белок гидролизуют, затем гидролизат подвергают хроматографии на смоле типа дауэкс 50 х8 в Na-форме. Элюирование производят с помощью непрерывной подачи буферного раствора. Выходящий из колонки элюат попадает в пластмассовую ячейку особой формы, где он смешивается с раствором нингидрина. Подачу нингидрина осуществляет специальный насос, работающий синхронно с насосом, подающим буферный раствор на колонку. Затем смесь элюата с нингидрином проходит через тефлоновый капилляр, который погружен в кипящую баню. В этих условиях в растворах происходит нингидриновое окрашивание, интенсивность которого измеряется в проточной кювете спектрофотометрически. Поглощение света регистрируется самописцем. Применение сферических смол [80] позволило сократить время исследования одного образца примерно в четыре раза, а использование особых ячеек сделало вполне допустимыми для анализа очень малые количества исследуемого вещества — порядка 0,01—0,05 мкмоля [38]. Введение одноколоночной процедуры значительно упрощает метод [9, 29, 43, 60]. С помощью этой методики в одной и той же пробе можно определить кислые, нейтральные и основные аминокислоты, что не только экономит исследуемый материал, но и повышает точность и сокращает время исследования. Работая на стандартном аминокислотном анализаторе и пользуясь некоторыми модификациями известных методов, можно полностью закончить анализ одного вещества в течение 3 ч [91. [c.32]

    Мартин и Синдж [6] показали, что при разделении и определении индивидуальных компонентов из одной порции смеси аминокислот можно получить более точную картину суммарного анализа белка, чем при выделении различных аминокислот (или их производных) из отдельных порций гидролизата. В последнем случае получаемые величины будут независимо искажаться ошибками, возникающими за счет потерь определяемой аминокислоты и примесей других аминокислот, так что суммарная величина будет содержать сумму этих независимых ошибок. Если аминокислоты разде.лять непрерывным элюированием одной порции гидролизата, то, хотя ошибки этого рода еще могут влиять на индивидуальные величины, при суммировании они аннулируются, так как индивидуальные ошибки в этом случае зависят друг от друга. Это дает более надежные основания для расчета числа аминокислотных остатков каждого типа, присутствующих в молекуле белка. Далее, поскольку ионообменная хроматография включает только одну операцию, метод характеризуется высокой разрешающей способностью и проводится в мягких условиях температуры и значений pH, ошибки в определении индивидуальных аминокислот малы. Метод ионообменной хроматографии Мура и (Стейна представляет собой поэтому успешное практическое осуществлеш1е стремления к простому, универсальному и точному методу аминокислотного анализа, начало которому положили Мартин и Синдж. [c.121]


    В ранних исследованиях по хроматографии аминокислот на сульфо-кислотных смолах [79] для элюирования использовали растворы кислот с pH меньше 1. Ионизация карбоксильных групп всех аминокислот таким образом была практически полностью подавлена, и молекулы имели общий положительный заряд за счет а-аминогрупп рК 9,7), дополняемый в случае основных аминокислот положительным зарядом ионизируемой группы боковой цепи. Ниже приведен механизм вытеснения аминокислот из сульфированных нолистирольных ионообменных смол за счет возрастания концентрации ионов водорода при pH меньше 1  [c.137]

    Разделение смеси аминокислот, приведенное на рис. 5.17, является примером ионообменной хроматографии при постоянной концентрации Na+ и трех различных значениях pH. Часто оказывается невозможным точно подобрать необходимые условия для удовлетворительного разделения неизвестной смеси ионов. По этой причине во многих случаях разделение на ионите проводят с помощью градиентного элюирования, при котором состав буферного раствора, поступающего в колонку, изменяют постепенно (либо относительно концентрации неорганического иона, участвующего в обмене с функциональными группами смолы, либо относительно pH), что приводит к изменению сродства растворенных веществ к иониту. На рис. 6.18 в качестве примера использования градиентного э.чюирования приведена картина разделения смеси белков. [c.155]

    В работе Гросса [5] описано получение S-этил-1-С -/-гомоци-стеина из йодистого этила-1- и 8-бензил-/-гомоцистеина. Исходное вещество (1,14 г), полученное из метионина через 8-бен-зил- /-гомоцистеин [6] и Ы-ацетил-5-бензил- /-гомоцистеин [7], восстанавливают металлическим натрием в жидком аммиаке, и образовавшийся меркаптид обрабатывают 0,63 г йодистого этила-ЬС Прибор для проведения реакции представляет собой модификацию прибора, о котором идет речь в примечании 2. Вещество, оставшееся после испарения аммиака, растворяют в воде, и полученный раствор подкисляют соляной кислотой до pH 1—2, затем этот раствор пропускают через колонку [8] (высота 2,5 м, диаметр 22 см), наполненную ионообменной смолой дауэкс-50 (степень сшивания 8%) с величиной зерен 200—400 меш. Фракции, содержащие продукт реакции, полученные при элюировании 2,5 н, соляной кислотой, объединяют и испаряют при пониженном давлении. Остаток растворяют в воде и с помощью раствора едкого натра создают среду с pH 6,2. Для очистки вещество сублимируют при температуре 180—200° и давлении 1 мм рт. ст. Выход 0,400 г (60%),[а]д + 23°, концентрация 1% в 2 н. растворе соляной кислоты. Методом бумажной хроматографии в системе бутиловый спирт — вода— уксусная кислота (10 5 2) или в системе третичный амиловый спирт — вода — пиридин (7 6 8) при температуре 22—25° на бумаге ватман № 4 показано, что вещество состоит из свободной аминокислоты и радиохимических примесей RjSi,61 и 0,61 соответственно. [c.218]

    Имеется, естественно, много методов хроматографического разделения, принципы которых будут рассмотрены в разделе, посвященном пептидам (стр. 151). Здесь же, чтобы не перегружать изложения, мы обсудим только вопрое о распределительной хроматографии, значение которой все еще возрастает. Мур и Штейн недавно описали обший метод разделения аминокислот, пептидов и белков посредством их элюирования из колонки, заполненной ионообменной смолой дауэкс-50 (сульфированной полкстирольной смолой) [2656, 268]. [c.138]


Смотреть страницы где упоминается термин Ионообменная хроматография аминокислот элюирования: [c.386]    [c.175]   
Методы химии белков (1965) -- [ c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматографи

Хроматография аминокислот

Хроматография ионообменная

Хроматография элюирования

Элюирование



© 2025 chem21.info Реклама на сайте