Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий определение озолением

    Главная проблема прямого озоления — потери некоторых примесей вследствие испарения, механического уноса или адсорбции. При определении средних и высоких концентраций нелетучих примесей эти отрицательные факторы не оказывают решающего влияния. Но для определения таких легколетучих примесей, как, например, мышьяк, ртуть, сера, фосфор, кадмий, свинец, или для определения элементов, содержащихся на уровне нг/г, от прямого озоления следует вообще отказаться. При прямом озолении много теряется ванадия. Это объясняется высокой летучестью оксида ванадия (V). [c.79]


    Еще один метод определения металлов в каменном угле с прямым озолением пробы, переводом золы в раствор и атомно-абсорбционным анализом раствора описан в работе [319]. Навеску 10—30 г измельченной до размера частиц 0,2 мм воздушно-сухой пробы в платиновой или фарфоровой чашке нагревают 30 мин до 500 °С и прокаливают 1—1,5 ч при 800 °С. При определении летучих элементов (кадмия, цинка, свинца) выдерживают 6—8 ч при 450 °С. Чашку охлаждают и взвешивают. Затем золу растирают в агатовой ступке, просеивают через сито с размером отверстий 0,07 мм и повторно прокаливают 1 ч при 800 °С (для определения летучих элементов при 450 °С). После охлаждения золу переносят в склянку, закрывают и тщательно перемешивают. [c.225]

    Ход определения. В делительную воронку помещают такой объем озоленной пробы, чтобы в ней содержалось от 2,5 до 25 мкг кадмия, доливают до 10 мл бидистиллятом, нейтрализуют раствором щелочи. Затем подкисляют, добавляя несколько капель 0,1 н. раствора соляной кислоты, вводят 2 мл 1%-ного раствора гидроксиламина, 0,5 мл 20%-ного раствора лимонной кислоты, чтобы удержать железо и алюминий в растворе, перемешивают, нейтрализуют раствором аммиака, после чего добавляют его. избыток 3 мл. Приливают 5 мл 0,05%-ного раствора дитизона в четыреххлористом углероде и встряхивают смесь в течение 2 мин. [c.139]

    Для определения цинка, меди, серебра, кадмия, хрома и кобальта в сточных и природных водах необходимо проводить озоление. [c.95]

    Для разложения растений применяют два метода сухое озоление и кислотное сжигание (мокрое озоление) (с. 450 - 451). Описанный способ сухого озоления используют для определения железа, марганца, цинка, меди, кобальта, никеля, свинца, кадмия, хрома. После мокрого озоления кроме названных элементов возможно определение молибдена. При использовании фотометрических методов определения золу и остаток от мокрого сжигания проб обрабатывают 0,3 М раствором соляной кислоты. Золу в тигле осторожно смачивают 0,3 М соляной кислотой, затем приливают 5 см этого же раствора. Тигли помещают на водяную баню и нагревают в течение 30 мин. Полученный раствор переносят через воронку в градуированные пробирки объемом 20 м Тигель обмывают бидистиллированной водой и доводят ею раствор до метки. [c.454]

    Кадмий — сравнительно трудновозбудимый элемент (энергия ионизации 8,99 эв), а энергия возбуждения наиболее интенсивной линии 5,41 эв). Поэтому для его определения целесообразно применять высокотемпературный источник света. Но кадмий и большинство его соединений легколетучи. В ряду летучести А. К. Русанова [8] они занимают одно из первых мест. Следовательно, для спокойнога испарения кадмия желательна низкая температура электрода. Сочетание низкой температуры электрода и высокой температуры плазмы обеспечивает работа в атмосфере аргона. Из-за высокой летучести кадмия при озолении пробы возможны существенные потери. Поэтому желательно применять кислотное озоление. Чувствительность его определения можно повысить фракционированием пробы, например при испарении большой навески из камерного электрода. [c.219]


    Испытуемое вещество высушивают до постоянного веса в платиновой или кварцевой чашке и подвергают сухому озолению в муфельной печи при 450° С, для ускорения озоления добавляют несколько капель перегнанной HNO3. Затем 20 мг золы помещают в угольный электрод и сжигают в дуге постоянного тока. Для определения кадмия используют линию 2288,0 А [16]. [c.184]

    Очень важно и очень трудно при анализе нефтепродуктов с непламенной атомизацией пробы пра1Вильно выбрать условия озоления. Это связано с тем, что часто летучесть определяемых примесей в форме металлорганических соединений сравнима с летучестью органической основы. Классическими примерами могут служить алкнловинцо вые и. карбонил.марганцовые соединения в бензине, а также порфирины ванадия и никеля в тяжелых нефтепродуктах. Для максимального снижения помех нужно в процессе озоления полностью отогнать основу. Но при этом неизбежны потери легколетучих примесей. Если озоление вести так, чтобы исключить потери примесей, то часть основы будет испаряться на стадии атомизации, при этом возникнут значительные фоновые помехи. Особенно трудно определять в тяжелых нефтяных основах тамие летучие элементы, как ртуть, мышьяк, кадмий, овинец, селен, сурьма. Так, не удалось подобрать условий для прямого определения кадмия и свинца в нефтепродуктах тяжелее, чем печное топливо № 2, методом непламенной атомизации [100]. В таких случаях проводят частичное озоление, чтобы не потерять определяемые элементы, а для учета помех от основы проводят коррекцию фона с применением дейтериевой лампы. Для оннжения фановых помех можно уменьшить количество дозируемого вешества. При этом интенсивность фона снижается сильнее, чем аналитический сигнал. Можно увеличить расход защитного газа. Но все эти меры приводят к снижению чувствительности анализа. [c.60]

    Динк И большинство его соединений легколетучи. В ряду летучести А. К. Русанова они расположены рядом с кадмием, сурьмой и висмутом. Определение малых содержаний цинка в нефтепродуктах представляет значительные трудности. При прямом озолении пробы потери цинка достигают недопустимой величины. Удовлетворительные результаты получают при озолении с коллектором, еще лучше — с кислотой. Благодаря высокой летучести цинка чувствительность его определения можно существенно повысить фракционированием пробы. Хорошие результаты получают при испарении большой навески пробы из камерного электрода. [c.278]

    Ниже приводятся некоторые примеры практического применения амперометрического комплексонометрического титрования. Этот метод используют для определения никеля и кадмия в аккумуляторной жидкости [62(10)], циркония в ниобиевых сплавах [60 (71)], алюминия [60 (151)] и висмута [60 (95)] в сплавах, ртути в органических соединениях после их озоления [58(86)] для определения кальция с вытеснением им ионов цинка в растворах с большим содёржанием щелочи [63(73)], индия в сфалерите [58(100)] и металлическом кадмии [56 (15)] цинка в ваннах для кобальтовых покрытий [57 (101)] в сплавах [56(3)] и маслах [53 (48)]. С помощью амперометрического титрования можно проводить также определение ЭДТА [55 (86), 59 (73), 60 (88)] и ДЦТА [60 (88)]. [c.115]

    За последние годы появилось много работ по определению металлов, как нормально входящих в состав пищевых продуктов, так и присутствующих в виде примесей мышьяка [174, сурьмы [170], висмута [137], бора [17, 101,261], кадмия [56], кобальта [16], свинца [58, 149], ртути [57], селена [163], олова [108] иурана[205]. Недавно опубликованы методы определения в пищевых продуктах солей фтористоводородной кислоты [156, 292] и иода [264]. Определение фторидов основано на перегонке в присутствии серной кислоты, нейтрализации дестиллята, выпариваний и озолении остатка. Далее золу обрабатывают хлорной кислотой и сульфатом серебра и снова подвергают перегонке. Ион фтора определяют в отгоне, добавляя избыток раствора нитрата тория и оттитровывая последний раствором фторида в присутствии ализаринового красного. [c.177]


Смотреть страницы где упоминается термин Кадмий определение озолением: [c.140]    [c.83]   
Методы разложения в аналитической химии (1984) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Кадмий определение

Озоление



© 2025 chem21.info Реклама на сайте